Destruction analysis of the antifoam additive

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.51422

Keywords:

antifoam additive, oil aging, destruction of molecules, oxygen-containing compounds, oxidation of hydrocarbons

Abstract

The article presents the results of a study changes in the structural-group composition of molecules of the antifoam additives, which occur during long-term use of hydraulic oil "Gіdranykoil FH-51", thereby reducing the guaranteed resource life of oil and, in turn, the reliability of the hydraulic system of the aircraft and the aircraft safety factor. The types of structural molecules of polyorganosiloxane liquid, their group composition and atomic mass are defined. It is found that during long-term use of hydraulic oil antifoam additive molecule susceptible to degradation breaking Si–O linkages and internal molecular rearrangement. As a result, these processes are formed low-molecular structure capable of sealing, thermal degradation, and participation in the processes of oxidation of hydrocarbons of all types.

Author Biography

Олена Яківна Кузнєцова, National Aviation University, ave. Kosmonavta Komarova 1, Kyiv, Ukraine, 03680

Doctor of Pedagogical Sciences, Associate Professor, Head of Department

Department of Theoretical and Applied Physics

References

  1. Koniaev, E. A., Nemchikov, M. L. (2008). Himmotologiia aviatsionnyh masel i gidravlicheskih zhidkostei. Moscow: MGTUGA, 81.
  2. Rezende, D. A., Bittencourt, R. R., Mansur, C. R. E. (2011, March). Evaluation of the efficiency of polyether-based antifoams for crude oil. Journal of Petroleum Science and Engineering, Vol. 76, № 3-4, 172–177. doi:10.1016/j.petrol.2011.01.009
  3. Garazha, V. V., Din Tan Hyng. (2007). Analiticheskaia otsenka effektivnosti raboty elektroochistitelia s voloknistym dielektricheskim napolnitelem. Vіsnik NAU, 1, 153–158.
  4. Garazha, V. V., Halil', S. A. (1998). Ochistka aviatsionnyh gidravlicheskih i motornyh masel ot emul'sionnoi vody i mehanicheskih primesei v kvazipostoiannom elektricheskom pole. Vestnik KMUGA, 1, 82–87.
  5. Tyshchenko, V. A., Shabalina, T. N., Lobzin, E. V., Poliakova, L. A., Kalinina, L. D. (1993). Otsenka stareniia gidravlicheskih masel. Himiia i tehnologiia topliv i masel, 7, 35–36.
  6. Sheikina, N. A., Petrov, L. V., Psiha, B. L., Haritonov, V. V., Tyshchenko, V. A., Shabalina, T. N. (2006). Mehanizm ingibiruiushchego deistviia difenilamina v protsesse okisleniia gidravlicheskih masel. Neftehimiia, 46 (1), 37–43.
  7. Sheikina, N. A., Tyshchenko, V. A., Shabalina, T. N., Shabalina, O. E. (2005). Vliianie uglevodorodnogo i strukturno-gruppovogo sostava osnov gidravlicheskih masel RM i MG-7-B na ih ekspluatatsionnye svoistva. Izvestiia VUZov. Seriia «Himiia i himicheskaia tehnologiia», 48 (10), 43–47.
  8. Kuznetsova, H., Netreba, J. (2015). Research of aging of mineral hydraulic oils. I. Fraction composition. Technology Audit And Production Reserves, 3(4(23)), 64-68. doi:10.15587/2312-8372.2015.43878
  9. Kuznetsova, H. (2015). Research into mineral hydraulic oil aging. II. Homologically and group composition of the fractions. Technology Audit And Production Reserves, 4(4(24)), 12-15. doi:10.15587/2312-8372.2015.47596
  10. Zakupra, V. A., Krygina, P. M., Rybalkin, V. N., Tanasov, I. I. (1988). Uskorennaia zhidkostnaia hromatografiia masel v proizvodstve sul'fonatnyh prisadok. Himiia i tehnologiia topliv i masel, 9, 35–38.
  11. Poliakova, A. A. (1973). Molekuliarnyi mass-spektral'nyi analiz neftei. Moscow: Nedra, 184.
  12. Budzikevich, G., Dzherassi, K., Williams, D. (1966). Interpretatsiia mass-spektrov organicheskih soedinenii. Moscow: Mir, 324.

Published

2015-09-22

How to Cite

Кузнєцова, О. Я. (2015). Destruction analysis of the antifoam additive. Technology Audit and Production Reserves, 5(7(25), 21–24. https://doi.org/10.15587/2312-8372.2015.51422