Distribution of induced potential in solenoid coil

Authors

  • Володимир Олександрович Бржезицький National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine https://orcid.org/0000-0002-9768-7544
  • Ярослав Олександрович Гаран National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine https://orcid.org/0000-0003-3242-9218
  • Микола Юрійович Лапоша National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine https://orcid.org/0000-0003-0909-7876

DOI:

https://doi.org/10.15587/2312-8372.2015.56655

Keywords:

solenoid, induced potential, high-frequency line trap, interference generation

Abstract

Induced magnetic field dependence of the potential for solenoid with uniform turns is considered.

It is shown that the distribution of induced potential in the solenoid is nonlinear.

Formulas for calculating induced potential using elliptic integrals I and type II are derived. Examples for the calculation of various length relations of solenoid to its radius (0,1 to 100) are given.

The basic laws related to the distribution of induced potential in the solenoid are shown.

The conditions necessary to achieve high stability characteristics of the coil in a wide frequency range are defined.

In the future, similar researches are possible for multilayer coils.

Author Biographies

Володимир Олександрович Бржезицький, National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56

Doctor of Technical Sciences, Professor, Acting Head of Department

Department of High Voltage Engineering and Electrophysics

Ярослав Олександрович Гаран, National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56

Engineer

Department of High Voltage Engineering and Electrophysics

Микола Юрійович Лапоша, National Technical University of Ukraine "Kyiv Polytechnic Institute", 37, Prospect Peremohy, 03056, Kyiv-56

PhD student

Department of High Voltage Engineering and Electrophysics

References

  1. Mikutskii, G. V., Skital'tsev, V. S. (1977). Vysokochastotnaia sviaz' po liniiam elektroperedachi. Ed. 2. Moscow: Energiia, 440.
  2. IEC 60437. Radio interference test on high-voltage insulators. (1998). 36. doi:10.3403/01268403
  3. Costea, M., Băran, I. (2010). Radiofrequency disturbances radiated and injected in a power line by a high voltage equipment. Scientific Bulletin of the Electrical Engineering Faculty of the Polytechnic University of Bucharest, Vol. 12, № 1, 77–83.
  4. IEC 60383-1. Insulators for overhead lines with a nominal voltage above 1000 V. Part 1: Ceramic or glass insulator units for a. c. systems. Definitions, test methods and acceptance criteria. (1996). 111. doi:10.3403/00632514
  5. Vysokochastotnye zagraditeli. Available: http://www.energy.siemens.com/ru/pool/ru/Power-Transmission/Downloads/Line_trap_ru.pdf
  6. Rainey, J. K., DeVries, J. S., Sykes, B. D. (2007, July).Estimation and measurement of flat or solenoidal coil inductance for radiofrequency NMR coil design. Journal of Magnetic Resonance, Vol. 187, № 1, 27–37. doi:10.1016/j.jmr.2007.03.016
  7. Choi, Y.-S., Lee, J.-C., Lee, S.-H., Park, D.-H. (2005, June). Electromagnetic field distribution of electrodeless fluorescent lamps and analysis of electrical properties for solenoidal induction coil. Conference Paper published in Electromagnetic Materials, 171–174. doi:10.1142/9789812701718_0041
  8. Morrison, F., Becker, A., Conti, U., Gasperikova, E. (2011). Ferrite-Cored Solenoidal Induction Coil Sensor for BUD (MM-1667). Technical Report, Ernest Orlando Lawrence Berkeley National Laboratory. Berkeley, CA (US), 26. doi:10.2172/1051526
  9. Qiu, Y., Zhang, Q., Zhang, M. L. (1993, March). Numerical calculation on multi-layers solenoidal coil. Journal of IEEE Transactions on Magnetics, Vol. 29, 2, 1434–1437. doi:10.1109/20.250672
  10. Harpen, M. D. (1989). Analysis of capacitive coupling and associated loss for a solenoidal magnetic resonance imaging radio-frequency coil. Journal of Medical Physics, Vol. 16, № 2, 234. doi:10.1118/1.596374
  11. Pahlavani, M. R. A., Shiri, A., Mohammadpour, H. A., Shoulaie, A. (2010). Inductance comparison of the solenoidal coil of modular toroidal coils using the analytical and finite element method. Journal of Progress In Electromagnetics Research B, Vol. 20, 337–352. doi:10.2528/pierb10030907
  12. Park, B., Neuberger, T., Webb, A. G., Bigler, D. C., Collins, C. M. (2010, January). Faraday shields within a solenoidal coil to reduce sample heating: Numerical comparison of designs and experimental verification. Journal of Magnetic Resonance, Vol. 202, № 1, 72–77. doi:10.1016/j.jmr.2009.09.023
  13. Laposha, M. Yu., Vashchuk, S. V. (2014). Rozrobka kotushok induktyvnosti z rivnomirnym rozpodilenniam indukovanoho potentsialu. Dopovidi za materialamy Mizhnarodnoi naukovo-tekhnichnoi konferentsii molodykh uchenykh, aspirantiv i studentiv «Suchasni problemy elektroenerhotekhniky ta avtomatyky». Kyiv: Politekhnika, 331–332.
  14. Kalantarov, P. L., Tseitlyn, L. A. (1986). Raschet induktivnostei. Ed. 3. Leningrad: Energoatomizdat. Leningr. otd-nie, 488.
  15. Il'in, V. P. (1985). Chislennye metody resheniia zadach elektrofiziki. Moscow: Nauka, 336.
  16. Demidovich, B. P., Maron, I. A. (1963). Osnovy vychislitel'noi matematiki. Moscow: Nauka, 660.

Published

2015-11-26

How to Cite

Бржезицький, В. О., Гаран, Я. О., & Лапоша, М. Ю. (2015). Distribution of induced potential in solenoid coil. Technology Audit and Production Reserves, 6(1(26), 50–54. https://doi.org/10.15587/2312-8372.2015.56655

Issue

Section

Electrical Engineering and Industrial Electronics: Original Research