The wireless computer networks state recognition over the three-dimensional field of directions

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.56825

Keywords:

wireless computer network, state recognition, visual image, three-dimensional field of directions

Abstract

It is shown that the features of the visual display of the wireless computer networks with partially unavailable monitoring operation elements do not allow detecting their condition by the known intelligent processing methods of static images. It was developed and implemented the method of detection using a three-dimensional field of directions. It was improved method for three-dimensional visual imaging of the structure of partially inaccessible for monitoring damaged wireless computer networks, which is based on the determination of the probability of efficiency inaccessible network elements available from the signals and image processing, the brightness of each pixel is proportional to the corresponding probabilities.

It was improved methods of recognizing the visual image of state of the wireless computer network structure by constructing a three-dimensional field of directions for it, and searching the image for the last encoding in a database corresponding to these codes that is recognized as an imprint of the real state of the network.

It was performed the test of developed methods in the daily activities of the Intelligence Directorate of Staff of the Land Forces Command of the Armed Forces of Ukraine during the study of features a set of forces and reconnaissance of operational commands and confirmed the possibility of the timely repair and replacement of damaged elements of the wireless network that guarantees the increase in the overall level of efficiency of the latter.

Author Biographies

Сергій Анатолійович Нестеренко, Odessa National Polytechnic University, 1 Shevchenko str., Odessa, Ukraine, 65044

Doctor of Science, Professor

Department of Computer intellectual systems and networks

Андрій Олександрович Становський, Odessa National Polytechnic University, 1 Shevchenko str., Odessa, Ukraine, 65044

Department of Computer intellectual systems and networks

Олена Олександрівна Оборотова, Odessa National Polytechnic University, 1 Shevchenko str., Odessa, Ukraine, 65044

Department of Oilgas and Chemical Mechanical Engineering 

References

  1. Saveleva, O. S. (2012). Netraditsionnaya matematicheskaya ekspress-model nadezhnosti slozhnyih sistem s rezervirovaniem. Suchasni tehnologiyi v mashinobuduvanni, 7, 232–242.
  2. Saveleva, O. S., Maksimov, V. G., Purich, D. A. (2012). Metod distantsionnoy strukturnoy diagnostiki nizko-chastotnoy analogovoy seti, chastichno nedostupnoy monitoringu. Pratsi Odeskogo Politehnichnogo Universitetu, 2 (39), 208–213.
  3. Purich, D. A., Saveleva, O. S., Tonkonogiy, V. M. (2013). Ekspress-analiz strukturnoy nadezhnosti slozhnyih tehnicheskih sistem s nagruzhennyim rezervirovaniem. Suchasni tehnologiyi v mashinobuduvanni, 8, 272–280.
  4. Nesterenko, S., Stanovs'kii, A., Toropenko, A., Shvets', P. (2015). Transformation of the structure of complex technical systems with partially unusable elements to the visual image. Eastern-European Journal Of Enterprise Technologies, 5(3(77)), 30–35. doi:10.15587/1729-4061.2015.51186
  5. Besprovodnye seti. Xreferat. Available: http://xreferat.com/33/466-1-besprovodnye-seti.html. Last accessed: 14.08.2015.
  6. Poniatie i vidy besprovodnyh setei. Informatika. Available: http://inphormatika.ru/lectures/ponyatie_i_vidy_besprovodnyh_setei.html. Last accessed: 13.07.2015.
  7. Nesterenko, S. A., Stanovskiy, A. O., Oborotova, O. O., Daderko, O. I. (2015). Intelektualna diagnostika stanu strukturi viddalenyh bezdrotovyh komp’yuternyh merezh. Materialy 2 Vseukrayinskoyi konferentsiyi «Informatsiyni tehnologiyi v osviti, tehnitsi ta promislovosti 2015», Ivano-Frankivsk, 102–103.
  8. Soyfer, V. A. (2003). Metodyi kompyuternoy obrabotki izobrazheniy. Мoscow: FIZMATLIZ, 784.
  9. Ilyasova, N. Yu., Ustinov, A. V. (1995). Kompyuternyiy analiz izobrazheniya kristallov slezyi. Tezisyi doklada na 2-oy mezhdunarodnoy konferentsii «Raspoznovanie-95». Kursk, 248–250.
  10. Chentsova, O. B., Prokofeva, G. L. (1998). Kristallograficheskiy metod obsledovaniya pri nekotoryih zabolevaniyah glaz. Мoscow: Metodicheskie rekomendatsii, 153.
  11. Dvoryanova, T. P., Ilyasova, N. Yu., Ustinov, A. V. (1996). Kompyuternaya sistema analiza diagnosticheskih kristallogramm. Kompyuternaya optika, 16, 90–96.
  12. Giumov, N. I., Krainukov, N. I., Sergeyev, V. V., Khramov, A. G. (1991). The Fast Algorithm of Image Approximation in a Sliding Window. Pattern Recognition and Image Analysis. 4, 424–426.
  13. Fisher, R., Dawson-Howe, K., Fitzgibbon, A., Robertson, C., Trucco, E. (2010). Dictionary of Computer Vision and Image Processing. John Wiley, 521.
  14. Glumov, N. I., Krainkov, N. I., Sergeyev, V. V., Khramov, A. G. (1991). Pattern Recognition and Image Analysis, 424.
  15. Kryilov, V. N., Maksimov, M. V., Davyidov, V. O. (2002). Avtomatizirovannaya sistema raspoznavaniya. Iskusstvennyiy intellekt, 4, 462–469.
  16. Antoschuk, S. G., Kryilov, V. N., Davyidov, V. O. (2000). Gibridnaya lineyno-rangovaya filtratsiya signalov i izobrazheniy. Trudyi Odesskogo politehnicheskogo universiteta, 3 (12), 140–142.
  17. Kryilov, V. N., Antoschuk, S. G., Bodalevskiy, A. A. (1998). Rangovaya obrabotka dvumernyih izobrazheniy v prostranstve otsenok i resheniy. Trudyi Odesskogo politehnicheskogo universiteta, 1 (5), 105–108.
  18. Kuzo, I. V., Zinko, R. V., Lozoviy, I. S. (2010). Zastosuvannya grafIv pri doslidzhenni funktsionuvannya transportnih zasobiv z pruzhno zchlenovanymy elementamy. Naukoviy visnyk NLTU, 20.12, 111–116.
  19. Ilyasova, N. Yu., Ustinov, A. V., Hramov, A. G. (1998). Chislennyie metodyi i algoritmyi postroeniya poley napravleniy kvaziperiodicheskih struktur. Kompyuternaya optika, 18, 150–165.
  20. Soifer, V. A., Kotlyar, V. V., Khonina, S. N., Khramov, A. G. (1996). The Method of the Directional Field in the Interpretation end Recognition of Images with Structure Redundancy. Pattern Recognition and Image Analysis, 4, 710–724.
  21. Ilyasova, N. Yu., Ustinov, A. V., Hramov, A. G. (1993). Metodyi analiza daktiloskopicheskih izobrazheniy na osnove polya napravleniy. Nauchnoe priborostroenie, 89–101.
  22. Hozman, J., Kubinec, R., Tmka, J., Varenka, J. (1995). Automatic computer evaluation of blood serum crystallograms. Praha: Publishing House of theCzechTechnicalUniversity, 424–426.
  23. Ilyasova, N. Yu., Hramov, A. G. (2006). Metod polya napravleniy v analize i interpretatsii diagnosticheskih izobrazheniy. Samara: Publishing House of thre Samara State Aerospace University, 160.
  24. Ustinov, A. V. (1999). Kompyuternaya optika, 156.
  25. Stanovskiy, P. A. (2009). Kodirovanie i poisk podvizhnyih i nepodvizhnyih izobrazheniy v hranilischah dannyih. Elektromashinobuduvannya ta elektroobladnannya. Tematichniy vipusk «Komp’yuternI sistemy ta merezhi», 72, 231–234.
  26. Vostrov, G. M., Abu Ayash, T. A., Stanovskiy, P. O. (2005). Do pitannya pro fraktalne koduvannya videopotokiv. Naukovi notatki, 17, 41–48.
  27. Gorobets, S. M. (2006). Osnovi kompyuternoyi grafiky. Kiyiv: Tsentr navchalnoyi literatury, 232.

Published

2015-11-26

How to Cite

Нестеренко, С. А., Становський, А. О., & Оборотова, О. О. (2015). The wireless computer networks state recognition over the three-dimensional field of directions. Technology Audit and Production Reserves, 6(2(26), 28–35. https://doi.org/10.15587/2312-8372.2015.56825

Issue

Section

Information Technologies: Original Research