Identification of uncertainty sources statistical decisions when diagnosing industrial facilities

Authors

  • Руслан Павлович Мигущенко National Technical University «Kharkiv Polytechnic Institute», st. Frunze 21, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-3287-9772

DOI:

https://doi.org/10.15587/2312-8372.2015.57059

Keywords:

diagnostics, reliability, probability, uncertainty, unsteadiness, decision function, discriminant analysis

Abstract

We consider probabilistic models of decision-making as part of the generalized algorithm of technical diagnostics. The existence of three sources of statistical uncertainty of decisions that affect the accuracy of diagnosis and restrictions on the number of measurement information. Developed and presented probabilistic graphical model types diagnostic reliability of dynamic objects.

These studies continued to study one of the directions in the matter of building control systems and diagnostics based on a probabilistic or statistical approach.

Such an approach is justified, since all parameters in the industrial objects are random and deterministic view does not allow the construction of efficient algorithms for control, diagnostics and management. Studies that are given in the article was a logical continuation of the work of the author in the field of vibration diagnostics of the state of industrial facilities.

Author Biography

Руслан Павлович Мигущенко, National Technical University «Kharkiv Polytechnic Institute», st. Frunze 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Associate Professor

Department of Information Technology and Measurement Systems

References

  1. Volodarskyi, Ye. T., Kukharchuk, V. V., Podzharenko, V. O., Serdiuk, H. B. (2001). Metrolohichne zabezpechennia vymiriuvan i kontroliu. Vinnytsia: Veles, 219.
  2. Barker, T. B. (1985). Quality by experimental design. New York: Marcel Dekker, 488.
  3. Montgomery, D. C. (2001). Introduction to Statistical Quality Control, 4th ed. New York: John Wiley & Sons, 796.
  4. Shhapov, P. F., Avrunin, O. G. (2011). Povyshenie dostovernosti kontrolia i diagnostiki obiektov v usloviiah neopredelionnosti. Kharkov: KhNADU, 191.
  5. Basseville, M., Benveniste, A. (1983). Seguential Detection of Abrupt Changes in Spectral Characteristics of Digital Signals. IEEE Transactions on Information Theory, Vol. 29, № 5, 709–723. doi:10.1109/tit.1983.1056737
  6. Wilsky, A. S. (1976). A Survey of Design Methods for Failure Detection in Dynamic Systems. Automatica, Vol. 12, 6, 601–611. doi:10.1016/0005-1098(76)90041-8
  7. Gorelik, A. L., Skripkin, V. A. (2004). Metody raspoznavaniia. Ed. 4. Moscow: Vysshaia shkola, 262.
  8. Basseville, M., Espiau, B., Gasnier, J. (1981, February). Edge detection using sequential methods for change in level – Part I: A sequential edge detection algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 29, № 1, 24–31. doi:10.1109/tassp.1981.1163523
  9. Mygushchenko, R. (2014). Issledovanie vliianiia ogranichennosti apriornoi informatsii na vid i razmer dostovernosti diagnostiki. Humanities Bulletin of BMSTU, 6, 201–204.
  10. Shchapov, P. F., Mygushchenko, R. P., Kropachek, O. Yu. (2015). Teoretychni ta praktychni zasady system kontroliu ta diahnostuvannia skladnykh promyslovykh obiektiv. Kharkiv: Pidruchnyk NTU «KhPI», 244.

Published

2015-11-26

How to Cite

Мигущенко, Р. П. (2015). Identification of uncertainty sources statistical decisions when diagnosing industrial facilities. Technology Audit and Production Reserves, 6(3(26), 18–22. https://doi.org/10.15587/2312-8372.2015.57059

Issue

Section

Systems and Control Processes: Original Research