Research of electro-physical and operating properties of polyorganosiloxane – graphite compositions

Authors

  • Любов Іванівна Мельник National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Pobedy 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5139-3105
  • Арегназ Арменівна Мелконян National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Pobedy 37, Kyiv, Ukraine, 03056, Ukraine
  • Андрій Валерійович Деренговський National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Pobedy 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2016.65507

Keywords:

composite materials, graphite, polyorganosiloxane, electrical conductivity, electrical resistivity, composite, polymethyl phenyl siloxane

Abstract

This article is devoted to solving scientific and practical problem - the development of new siloxane graphite conductive composite materials with adjustable electrical properties and high thermal stability. Such compositions can be used as heating devices in some premises for different purposes, heating shoes, anti-icicle mean.

The results of research of electrical conductivity for system polyorganosiloxane- filler in a wide concentration range of the last and impact of ethyl silicate-40 on its shift. It is established that the experimental compositions based on polyorganosiloxane graphite system GLS-1 have percolation effect within 32-35 weight % of graphite, coating electrical resistivity abruptly dropped to a level of 16510-3 Ohmm. Increasing the concentration of graphite to 60 weight % leads to a further reduction in resistivity to a level of 9010-3 Ohmm.

The most significant decrease in electrical resistivity in the system PMFS-GLS-1 is achieved at injection of additional 5 weight % of ethyl silicate-40 with further heat treatment followed by 3 hours at 250 °C. The value of this index does not exceed 3010-3 Ohmm. The test systems are characterized by a negative temperature coefficient of resistance over wide concentration range of the filler and have high adhesion ability to substrates of different nature. There are hydrophobic coatings.

Filler concentration significantly affects the electrical properties of the composition, so the dependence of power density of filler content (at almost the same temperature of heating surface) is parabolic in nature with minimal filler concentrations in the range 55...60 weight %, regardless of the nature of binding and for system PMFS-GLS-1 in the temperature range 175...185 °C at a concentration of 31,5-55-76 weight % specific power is under 0,718-0,639-0,997 W/cm2, and PFS-GLS in the temperature range 170...195 °C and concentration of 30-60-70 weight % it is under 0,938-0,530-0,927 W/cm2.

The behavior of these systems as heating elements is studied. A one possible heater construction form developed compositions is proposed. Its performance characteristics are studied.

Author Biographies

Любов Іванівна Мельник, National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Pobedy 37, Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Senior Lecturer

Department of chemical technology of composites

Арегназ Арменівна Мелконян, National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Pobedy 37, Kyiv, Ukraine, 03056

Department of chemical technology of composites

Андрій Валерійович Деренговський, National Technical University of Ukraine «Kyiv Polytechnic Institute», ave. Pobedy 37, Kyiv, Ukraine, 03056

Department of chemical technology of composites

References

  1. Peckett, J. W., Trens, P., Gougeon, R. D., Pöppl, A., Harris, R. K., Hudson, M. J. (2000). Electrochemically oxidised graphite. Carbon, Vol. 38, № 3, 345–353. doi:10.1016/s0008-6223(99)00110-4
  2. Yue, Z. R., Jiang, W., Wang, L., Gardner, S. D., Pittman, C. U. (1999, January). Surface characterization of electrochemically oxidized carbon fibers. Carbon, Vol. 37, № 11, 1785–1796. doi:10.1016/s0008-6223(99)00047-0
  3. Vovchenko, L., Lazarenko, O., Matzui, L., Perets, Y., Zhuravkov, A., Fedorets, V., Normand, F. L. (2013, October 4). Mechanical and electrical properties of the epoxy composites with graphite nanoplatelets and carbon nanotubes. Phys. Status Solidi A, Vol. 211, № 2, 336–341. doi:10.1002/pssa.201330091
  4. Chernish, I., Karpov, I., Prikhodko, G., Shay, V. (1990). Physico-chemical properties of graphite and its compounds. Kyiv: Naukova dumka, 200.
  5. Vovchenko, L. L., Matzui, L. Y., Oliynyk, V. V., Launetz, V. L. (2011, March 21). The Effect of Filler Morphology and Distribution on Electrical and Shielding Properties of Graphite-Epoxy Composites. Molecular Crystals and Liquid Crystals, Vol. 535, № 1, 179–188. doi:10.1080/15421406.2011.538335
  6. Vovchenko, L., Matzui, L., Oliynyk, V., Launetz, V., Zhuravkov, O. (2013, March). Electrical and shielding properties of epoxy composites containing hybrid carbon fillers. Materialwissenschaft und Werkstofftechnik, Vol. 44, № 2-3, 249–253. doi:10.1002/mawe.201300116
  7. Matzui, L. Y., Ovsienko, I. V., Len, T. A., Vovchenko, L. L., Prylutskyy, Y. I., Zaginaichenko, S. Y., Eklund, P., Normand, F. (2007). Electrophysical properties of the nanocarbon materials. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology, 149–154. doi:10.1007/978-1-4020-5514-0_17
  8. Kariakina, M. I. (1980). Laboratory workshop on testing of paints and coatings. Moscow: Chemistry, 240.
  9. Svіdersky, V., Melnik, L., Lavrinenko, S. (2002). Conductive compositions based on polyorganosiloxane. Chemical Industry of Ukraine, 1, 22–24.
  10. Ovsienko, I. V., Len, T. A., Matzui, L. Y., Prylutskyy, Y. I., Ritter, U., Scharff, P., Le Normand, F., Eklund, P. (2007, June 11). Resistance of a Nanocarbon Material Containing Nanotubes. Molecular Crystals and Liquid Crystals, Vol. 468, № 1, 289–297. doi:10.1080/15421400701231582
  11. Vovchenko, L. L., Matzui, L. Y., Zakharenko, N. I., Kapitanchuk, L. M., Brusilovets, A. I. (2006, January). Thermal stability of graphite-Cobalt nanocomposite materials. Inorganic Materials, Vol. 42, № 1, 19–23. doi:10.1134/s0020168506010055
  12. Svіdersky, V., Melnik, L., Lavrinenko, S.(2002). Electric heating materials and elements based on polіorganosiloksane filled graphit. Chemical Industry of Ukraine, 2, 24–26.
  13. Lazarenko, A., Vovchenko, L., Matzui, L., Kozachenko, V., Prylutskyy, Y., Scharff, P., Ritter, U. (2010, October 8). Thermal diffusivity of nanocarbon composites. Polymer Composites, Vol. 32, № 1, 14–17. doi:10.1002/pc.21009

Published

2016-03-29

How to Cite

Мельник, Л. І., Мелконян, А. А., & Деренговський, А. В. (2016). Research of electro-physical and operating properties of polyorganosiloxane – graphite compositions. Technology Audit and Production Reserves, 2(4(28), 63–68. https://doi.org/10.15587/2312-8372.2016.65507

Issue

Section

Technologies of food, light and chemical industry