Determination of precipitation regularities for nanoparticles of hydrated metal oxides in the anion exchange resin

Authors

  • Константин Сергеевич Супруненко National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave. Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-0559-9054
  • Александр Александрович Kвитка National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave. Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-4034-7052
  • Екатерина Олеговна Куделко V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv, Ukraine https://orcid.org/0000-0002-7319-8797
  • Юлия Сергеевна Дзязько V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv, Ukraine https://orcid.org/0000-0003-3599-9558
  • Александра Станиславовна Руденко V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv, Ukraine https://orcid.org/0000-0003-2327-5106

DOI:

https://doi.org/10.15587/2312-8372.2016.70634

Keywords:

organic and inorganic ionites, hydrated metal oxides, nanoparticles, fractals

Abstract

Organic and inorganic ion-exchange materials containing incorporated inorganic particles of ion exchangers are characterized by enhanced selectivity for ions of toxic metals and resistant to poisoning by organic substances. An important task for achieve the necessary kinetic parameters of ion exchange is to reduce the size of the incorporated particles that is particularly important for hydrated oxides containing functional groups, mainly, on the outer surface of the particles. Regularities of forming Zr(IV), Fe(III), Al(III) oxide particles in a polymeric anion exchange matrix are considered in the article. The aim of research is establishing and experimental confirmation of deposition mechanism for inorganic ionite in the polymer for directional control of size and state of the particles.

Using computer analysis of TEM images it was revealed that the fractal dimension of the aggregate particles is 2,38-2,72. Nature of modifier also determines the state of the polymer particles. The effect of these factors was analyzed using the Ostwald-Freundlich equation. It was established that the primary nanoparticle size is determined by reprecipitation. Accordingly, the formation mechanism of aggregates is association of nanoparticles with a small cluster, and the limiting step is the diffusion of the polymer nanoparticles. The equation for the diffusion flux of nanoparticles was obtained and it was shown that flux slowing leads to formation of dendritic multilevel structures.

The results can be used to develop technologies for ionite synthesis, ion-exchange membranes and materials for baromembrane separation. The proposed approach allows to obtain materials with a given particle size and, consequently, with certain functional properties.

Author Biographies

Константин Сергеевич Супруненко, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave. Kyiv, Ukraine, 03056

Department of Cybernetics of Chemical Technology Processes

Александр Александрович Kвитка, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremogy ave. Kyiv, Ukraine, 03056

Candidate of Chemical Sciences, Associate Professor

Department of Cybernetics of Chemical Technology Processes

Екатерина Олеговна Куделко, V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv

Candidate of Chemical Sciences

Department of sorption & membrane technologies and materials

Юлия Сергеевна Дзязько, V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv

Doctor of Chemical Sciences

Department of sorption & membrane technologies and materials

Александра Станиславовна Руденко, V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv

Department of sorption & membrane technologies and materials

References

  1. Awual, M. R., Miyazaki, Y., Taguchi, T., Shiwaku, H., Yaita, T. (2016, May). Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent. Chemical Engineering Journal, Vol. 291, 128–137. doi:10.1016/j.cej.2016.01.109
  2. Zidan, W. I., Abo-Aly, M. M., Elhefnawy, O. A., Bakier, E. (2014, December 20). Batch and column studies on uranium adsorption by Amberlite XAD-4 modified with nano-manganese dioxide. Journal of Radioanalytical and Nuclear Chemistry, Vol. 304, № 2, 645–653. doi:10.1007/s10967-014-3833-3
  3. Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S., Zhang, Q. (2011, June). Polymer-supported nanocomposites for environmental application: A review. Chemical Engineering Journal, Vol. 170, № 2-3, 381–394. doi:10.1016/j.cej.2011.02.071
  4. Dzyazko, Y. S., Ponomaryova, L. N., Volfkovich, Y. M., Sosenkin, V. E., Belyakov, V. N. (2013, September 22). Polymer Ion-Exchangers Modified with Zirconium Hydrophosphate for Removal of Cd2++ Ions from Diluted Solutions. Separation Science and Technology, Vol. 48, № 14, 2140–2149. doi:10.1080/01496395.2013.794434
  5. Ponomareva, L. N., Dzyazko, Yu. S., Gomza, Yu. P., Nesin, S. D., Mitchenko, T. E. (2012). Structure and ion-exchange properties of organic-inorganic ion-exchangers containing nanoparticles of zirconium hydrophosphate. Polimernyi zhurnal, Vol. 34, № 4, 336–344.
  6. Dzyazko, Y. S., Ponomaryova, L. N., Volfkovich, Y. M., Trachevskii, V. V., Palchik, A. V. (2014, November). Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Microporous and Mesoporous Materials, Vol. 198, 55–62. doi:10.1016/j.micromeso.2014.07.010
  7. Dzyazko, Y. C., Ponomareva, L. N., Volfkovich, Y. M., Sosenkin, V. E. (2012, May 5). Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russian Journal of Physical Chemistry A, Vol. 86, № 6, 913–919. doi:10.1134/s0036024412060088
  8. Dzyazko, Y. S., Rozhdestvenska, L. M., Palchik, A. V., Lapicque, F. (2005, October). Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers. Separation and Purification Technology, Vol. 45, № 2, 141–146. doi:10.1016/j.seppur.2005.03.005
  9. Yaroslavtsev, A. B. (1997). Ionnyi obmen na neorganicheskih sorbentah. Uspehi himii, Vol. 66, № 7, 641–659.
  10. Susdalev, I. P. (2006). Nanotehnologiia: fisiko-himiia nanoklasterov, nanostruktur nanomaterialov. Moscow: KomKniga, 592. ISBN 5-484-00243-5.
  11. Beaucage, G. (1995, December 1). Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. Journal of Applied Crystallography, Vol. 28, № 6, 717–728. doi:10.1107/s0021889895005292
  12. Neimark, A. V., Robens, E., Unger, K. K., Volfkoyich, Y. M. (1994, March). Self Similarity in Swelling Systems: Fractal Properties of Peat. Fractals, Vol. 02, № 01, 45–52. doi:10.1142/s0218348x94000041
  13. Douketis, C., Wang, Z., Haslett, T. L., Moskovits, M. (1995, April 15). Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Physical Review B, Vol. 51, № 16, 11022–11031. doi:10.1103/physrevb.51.11022
  14. Van Put, A., Vertes, A., Wegrzynek, D., Treiger, B., Van Grieken, R. (1994, July). Quantitative characterization of individual particle surfaces by fractal analysis of scanning electron microscope images. Fresenius' Journal of Analytical Chemistry, Vol. 350, № 7-9, 440–447. doi:10.1007/bf00321787
  15. Gwyddion – Free SPM data analysis software. (2008). Brno: Czech Metrology Institute. Available: http://gwyddion.net
  16. Myerson, A. S. (2002). Handbook of Industrial Crystallization. Second Edition. Boston, Oxford, Johannesburg, Melbourne, New Dalhy, Singapure: Butterworth-Heinemann, 304. doi:10.1016/b978-075067012-8/50000-8
  17. Harland, C. E. (1994). Ion Exchange: Theory and Practice. Royal Society of Chemistry, 302. doi:10.1039/9781847551184
  18. Bliumental', U. B. (1963). Himiia tsirkoniia. Moscow: Isdatel'stvo inostrannoi literatury, 345.
  19. Lindsay, S. M. (2009). Introduction to Nanoscience. Oxford University Press, 480. ISBN 978-0199544219.
  20. Afonin, G., Beznosyk, Y., Dzyazko, Y., Skladannyy, D., Bondarenko, O. (2016). Simulation of nickel ions extraction from combined solutions. Technology Audit And Production Reserves, 1(1(27)), 53–57. doi:10.15587/2312-8372.2016.58747
  21. Afonin, G., Beznosyk, Y., Dzyazko, Y., Ponomareva, L. (2015). Modeling of Ni2+ exchange on the strong acid ion-exchange resin and the organic-inorganic ion exchanger. Technology Audit And Production Reserves, 2(4(22)), 63–67. doi:10.15587/2312-8372.2015.40640
  22. Brinker, C. J., Scherer, G. W. (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Amsterdam: Elsevier, 912. doi:10.1016/B978-0-08-057103-4.50001-5

Published

2016-05-26

How to Cite

Супруненко, К. С., Kвитка А. А., Куделко, Е. О., Дзязько, Ю. С., & Руденко, А. С. (2016). Determination of precipitation regularities for nanoparticles of hydrated metal oxides in the anion exchange resin. Technology Audit and Production Reserves, 3(3(29), 42–47. https://doi.org/10.15587/2312-8372.2016.70634

Issue

Section

Technologies of food, light and chemical industry