Determination of precipitation regularities for nanoparticles of hydrated metal oxides in the anion exchange resin
DOI:
https://doi.org/10.15587/2312-8372.2016.70634Keywords:
organic and inorganic ionites, hydrated metal oxides, nanoparticles, fractalsAbstract
Organic and inorganic ion-exchange materials containing incorporated inorganic particles of ion exchangers are characterized by enhanced selectivity for ions of toxic metals and resistant to poisoning by organic substances. An important task for achieve the necessary kinetic parameters of ion exchange is to reduce the size of the incorporated particles that is particularly important for hydrated oxides containing functional groups, mainly, on the outer surface of the particles. Regularities of forming Zr(IV), Fe(III), Al(III) oxide particles in a polymeric anion exchange matrix are considered in the article. The aim of research is establishing and experimental confirmation of deposition mechanism for inorganic ionite in the polymer for directional control of size and state of the particles.
Using computer analysis of TEM images it was revealed that the fractal dimension of the aggregate particles is 2,38-2,72. Nature of modifier also determines the state of the polymer particles. The effect of these factors was analyzed using the Ostwald-Freundlich equation. It was established that the primary nanoparticle size is determined by reprecipitation. Accordingly, the formation mechanism of aggregates is association of nanoparticles with a small cluster, and the limiting step is the diffusion of the polymer nanoparticles. The equation for the diffusion flux of nanoparticles was obtained and it was shown that flux slowing leads to formation of dendritic multilevel structures.
The results can be used to develop technologies for ionite synthesis, ion-exchange membranes and materials for baromembrane separation. The proposed approach allows to obtain materials with a given particle size and, consequently, with certain functional properties.
References
- Awual, M. R., Miyazaki, Y., Taguchi, T., Shiwaku, H., Yaita, T. (2016, May). Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent. Chemical Engineering Journal, Vol. 291, 128–137. doi:10.1016/j.cej.2016.01.109
- Zidan, W. I., Abo-Aly, M. M., Elhefnawy, O. A., Bakier, E. (2014, December 20). Batch and column studies on uranium adsorption by Amberlite XAD-4 modified with nano-manganese dioxide. Journal of Radioanalytical and Nuclear Chemistry, Vol. 304, № 2, 645–653. doi:10.1007/s10967-014-3833-3
- Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S., Zhang, Q. (2011, June). Polymer-supported nanocomposites for environmental application: A review. Chemical Engineering Journal, Vol. 170, № 2-3, 381–394. doi:10.1016/j.cej.2011.02.071
- Dzyazko, Y. S., Ponomaryova, L. N., Volfkovich, Y. M., Sosenkin, V. E., Belyakov, V. N. (2013, September 22). Polymer Ion-Exchangers Modified with Zirconium Hydrophosphate for Removal of Cd2++ Ions from Diluted Solutions. Separation Science and Technology, Vol. 48, № 14, 2140–2149. doi:10.1080/01496395.2013.794434
- Ponomareva, L. N., Dzyazko, Yu. S., Gomza, Yu. P., Nesin, S. D., Mitchenko, T. E. (2012). Structure and ion-exchange properties of organic-inorganic ion-exchangers containing nanoparticles of zirconium hydrophosphate. Polimernyi zhurnal, Vol. 34, № 4, 336–344.
- Dzyazko, Y. S., Ponomaryova, L. N., Volfkovich, Y. M., Trachevskii, V. V., Palchik, A. V. (2014, November). Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Microporous and Mesoporous Materials, Vol. 198, 55–62. doi:10.1016/j.micromeso.2014.07.010
- Dzyazko, Y. C., Ponomareva, L. N., Volfkovich, Y. M., Sosenkin, V. E. (2012, May 5). Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russian Journal of Physical Chemistry A, Vol. 86, № 6, 913–919. doi:10.1134/s0036024412060088
- Dzyazko, Y. S., Rozhdestvenska, L. M., Palchik, A. V., Lapicque, F. (2005, October). Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers. Separation and Purification Technology, Vol. 45, № 2, 141–146. doi:10.1016/j.seppur.2005.03.005
- Yaroslavtsev, A. B. (1997). Ionnyi obmen na neorganicheskih sorbentah. Uspehi himii, Vol. 66, № 7, 641–659.
- Susdalev, I. P. (2006). Nanotehnologiia: fisiko-himiia nanoklasterov, nanostruktur nanomaterialov. Moscow: KomKniga, 592. ISBN 5-484-00243-5.
- Beaucage, G. (1995, December 1). Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. Journal of Applied Crystallography, Vol. 28, № 6, 717–728. doi:10.1107/s0021889895005292
- Neimark, A. V., Robens, E., Unger, K. K., Volfkoyich, Y. M. (1994, March). Self Similarity in Swelling Systems: Fractal Properties of Peat. Fractals, Vol. 02, № 01, 45–52. doi:10.1142/s0218348x94000041
- Douketis, C., Wang, Z., Haslett, T. L., Moskovits, M. (1995, April 15). Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Physical Review B, Vol. 51, № 16, 11022–11031. doi:10.1103/physrevb.51.11022
- Van Put, A., Vertes, A., Wegrzynek, D., Treiger, B., Van Grieken, R. (1994, July). Quantitative characterization of individual particle surfaces by fractal analysis of scanning electron microscope images. Fresenius' Journal of Analytical Chemistry, Vol. 350, № 7-9, 440–447. doi:10.1007/bf00321787
- Gwyddion – Free SPM data analysis software. (2008). Brno: Czech Metrology Institute. Available: http://gwyddion.net
- Myerson, A. S. (2002). Handbook of Industrial Crystallization. Second Edition. Boston, Oxford, Johannesburg, Melbourne, New Dalhy, Singapure: Butterworth-Heinemann, 304. doi:10.1016/b978-075067012-8/50000-8
- Harland, C. E. (1994). Ion Exchange: Theory and Practice. Royal Society of Chemistry, 302. doi:10.1039/9781847551184
- Bliumental', U. B. (1963). Himiia tsirkoniia. Moscow: Isdatel'stvo inostrannoi literatury, 345.
- Lindsay, S. M. (2009). Introduction to Nanoscience. Oxford University Press, 480. ISBN 978-0199544219.
- Afonin, G., Beznosyk, Y., Dzyazko, Y., Skladannyy, D., Bondarenko, O. (2016). Simulation of nickel ions extraction from combined solutions. Technology Audit And Production Reserves, 1(1(27)), 53–57. doi:10.15587/2312-8372.2016.58747
- Afonin, G., Beznosyk, Y., Dzyazko, Y., Ponomareva, L. (2015). Modeling of Ni2+ exchange on the strong acid ion-exchange resin and the organic-inorganic ion exchanger. Technology Audit And Production Reserves, 2(4(22)), 63–67. doi:10.15587/2312-8372.2015.40640
- Brinker, C. J., Scherer, G. W. (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Amsterdam: Elsevier, 912. doi:10.1016/B978-0-08-057103-4.50001-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Константин Сергеевич Супруненко, Александр Александрович Kвитка, Екатерина Олеговна Куделко, Юлия Сергеевна Дзязько, Александра Станиславовна Руденко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.