Thermodynamic cycle of ramjet in coordinate P-V, T-S calculation

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.71497

Keywords:

paraboloid zone of braked flow, kinematic analysis

Abstract

Thermodynamic cycle of ramjet in coordinate P-V, T-S, which is represented in the modern theory of air-jet engines (AJE), is performed with flow laws liquids and gases violation, because in zone H-B negative  (against the flow) gradient of static pressure takes place, which make impossible gas flow coming it to the engine. This is connected with that while formula of thrust air-jet engine calculation in zone of control  contour H-d paraboloid zone of braked flow generation had not be taken in to care, as a physical phenomenon, static pressure on the periphery of which, Pн*, is a maximum in zone H-B, providing on any of air-jet engine’s work regime positive (by the flow) static pressure gradient, even with the presence of negative (against the flow) static pressure gradient in measure of supersonic fly speed inlet nozzle that provides gas flow moving into the engine don’t breaking all mechanic laws of  liquids and gases expiration, which say that air flow moving into the engine is possible only with positive(by the flow) static pressure gradient existence.

In this paper, taking into account paraboloid zone of braked flow generation in control  contour H-d as a physical phenomenon, is given a correct description of the operating principle of the ramjet, and on this basis, developed the correct thermodynamic ramjet cycle in coordinate PV, TS, which is the fundamental basis of the progressive «United propulsion theory on continuous flow».

Author Biographies

Борис Шамшадович Мамедов, Zaporizhzhya National Technical University, st. Zhukovsky, 64, Zaporozhye, Ukraine, 69063

Candidate of Technical Sciences, Associate Professor

Department of descriptive geometry, engineering and computer graphics 

Ольга Валерьевна Лютова, Zaporizhzhya National Technical University, st. Zhukovsky, 64, Zaporozhye, Ukraine, 69063

Candidate of Technical Sciences, Associate Professor

Department of descriptive geometry, engineering and computer graphics 

Светлана Анатольевна Бовкун, Zaporizhzhya National Technical University, st. Zhukovsky, 64, Zaporozhye, Ukraine, 69063

Senior Lecturer

Department of descriptive geometry, engineering and computer graphics 

Марианна Васильевна Скоробагатая, Zaporizhzhya National Technical University, st. Zhukovsky, 64, Zaporozhye, Ukraine, 69063

Senior Lecturer

Department of descriptive geometry, engineering and computer graphics 

Елена Борисовна Корниенко, Zaporizhzhya National Technical University, st. Zhukovsky, 64, Zaporozhye, Ukraine, 69063

Lecturer

Department of descriptive geometry, engineering and computer graphics 

Дмитрий Иванович Харченко, Zaporizhzhya National Technical University, st. Zhukovsky, 64, Zaporozhye, Ukraine, 69063

Lecturer

Department of descriptive geometry, engineering and computer graphics 

References

  1. Shliahtenko, S. M. et al; In: Shliahtenko, S. M. (1987). Teoriia i raschet vozdushno-reaktivnyh dvigatelei. Moscow: Mashinostroenie, 568.
  2. Mamedov, B. Sh.; Zaporizhzhya National Technical University. (2013). Edinaia teoriia dvizhitelei na nepreryvnyh potokah. Kharkiv: PC «Technology Center», 296.
  3. Mamedov, B. Sh., Shchtanko, P. K. (2015). Sravnitel'nyi analis rascheta tiagi i poletnogo (tiagovogo) KPD turboreaktivnyh dvuhkonturnyh dvigatelei po sovremennoi teorii vosdushchno-reaktivnyh dvigatelei i Edinoi teorii dvizhitelei na nepreryvnyh potokah. Fundamental'nye i prikladnye problemy tehniki i tehnologii, 24 (312), 63–69.
  4. Mamedov, B. Sh.; assignee: Zaporizhzhya National Technical University. (25.12.2009). Method for increase of gas-dynamic stability of operation of air-jet engines. Patent of Ukraine 46407, MPK F04D 27/00, F02K 1/00, F02K 3/00, F02C 7/00. Appl. № u200905152. Filed 25.05.2009. Bull. № 24, 26.
  5. Kasandzhan, P. K., Tihonov, N. D., Yanko, A. K. (1983). Teoriia aviatsionnyh dvigatelei. Moscow: Mashchinostroenie, 223.
  6. Kasakevich, V. V. (1974). Avtokolebaniia (pompazh) v kompresorah. Moscow: Mashchinostroenie, 264.
  7. Mamedov, B. Sh. (2014). Edinaia teoriia dvizhitelei. Prichiny generirovaniia neustoichivoi raboty turboreaktivnyh dvigatelei pri vslete v usloviiah zharkogo klimata. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 9 (116), 56–62.
  8. Gorlov, V. (2004). Grazhdanskaia aviatsiia Rossii. Moscow: Voennyi parad, 336.
  9. Mamedov, B. Sh. (2014). Edinaia teoriia dvizhitelei. Novoe naznachenie i printsip raboty «nulevoi» stupeni kompressora nizkogo davleniia. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 8 (115), 55–60.
  10. Shchulgin, V. A., Gaisinskii, S. Ya. (1984). Dvuhkonturnye turboreaktivnye dvigateli maloshchumnyh samoletov. Moscow: Mashchinostroenie, 212.
  11. Karpov, Ya. S., Panasenko, B. A., Ryzhenko, A. I. (2007). Osnovy aerokosmicheskoi tehniki. Kharkiv: KhAI, 656.
  12. Stechkin, B. S. (1977). Izbrannye trudy. Teoriia teplovyh dvigatelei. Moscow: Nauka, 410.
  13. Nechaev, Yu. N., Fedorov, R. M. (1977). Teoriia aviatsionnyh gazoturbinnyh dvigatelei. Part 1. Moscow: Mashinostroenie, 311.
  14. Micheli, M., Kappis, W., Guidati, G., Felderhoff, M. (2009). Compressor Design From Specification to Validation: Application of a Fast and Reliable Process. Volume 7: Turbomachinery, Parts A and B, Paper № GT2009-59217, 365–372. doi:10.1115/gt2009-59217
  15. Terauchi, K., Kariya, D., Maeda, S., Yoshiura, K. (2005). Redesign of an 11-Stage Axial Compressor for Industrial Gas Turbine. Volume 6: Turbo Expo 2005, Parts A and B, Paper GT2005-68689, 261–267. doi:10.1115/gt2005-68689

Published

2016-05-26

How to Cite

Мамедов, Б. Ш., Лютова, О. В., Бовкун, С. А., Скоробагатая, М. В., Корниенко, Е. Б., & Харченко, Д. И. (2016). Thermodynamic cycle of ramjet in coordinate P-V, T-S calculation. Technology Audit and Production Reserves, 3(1(29), 28–32. https://doi.org/10.15587/2312-8372.2016.71497