Thermodynamic cycle of ramjet in coordinate P-V, T-S calculation
DOI:
https://doi.org/10.15587/2312-8372.2016.71497Keywords:
paraboloid zone of braked flow, kinematic analysisAbstract
Thermodynamic cycle of ramjet in coordinate P-V, T-S, which is represented in the modern theory of air-jet engines (AJE), is performed with flow laws liquids and gases violation, because in zone H-B negative (against the flow) gradient of static pressure takes place, which make impossible gas flow coming it to the engine. This is connected with that while formula of thrust air-jet engine calculation in zone of control contour H-d paraboloid zone of braked flow generation had not be taken in to care, as a physical phenomenon, static pressure on the periphery of which, Pн*, is a maximum in zone H-B, providing on any of air-jet engine’s work regime positive (by the flow) static pressure gradient, even with the presence of negative (against the flow) static pressure gradient in measure of supersonic fly speed inlet nozzle that provides gas flow moving into the engine don’t breaking all mechanic laws of liquids and gases expiration, which say that air flow moving into the engine is possible only with positive(by the flow) static pressure gradient existence.
In this paper, taking into account paraboloid zone of braked flow generation in control contour H-d as a physical phenomenon, is given a correct description of the operating principle of the ramjet, and on this basis, developed the correct thermodynamic ramjet cycle in coordinate PV, TS, which is the fundamental basis of the progressive «United propulsion theory on continuous flow».
References
- Shliahtenko, S. M. et al; In: Shliahtenko, S. M. (1987). Teoriia i raschet vozdushno-reaktivnyh dvigatelei. Moscow: Mashinostroenie, 568.
- Mamedov, B. Sh.; Zaporizhzhya National Technical University. (2013). Edinaia teoriia dvizhitelei na nepreryvnyh potokah. Kharkiv: PC «Technology Center», 296.
- Mamedov, B. Sh., Shchtanko, P. K. (2015). Sravnitel'nyi analis rascheta tiagi i poletnogo (tiagovogo) KPD turboreaktivnyh dvuhkonturnyh dvigatelei po sovremennoi teorii vosdushchno-reaktivnyh dvigatelei i Edinoi teorii dvizhitelei na nepreryvnyh potokah. Fundamental'nye i prikladnye problemy tehniki i tehnologii, 24 (312), 63–69.
- Mamedov, B. Sh.; assignee: Zaporizhzhya National Technical University. (25.12.2009). Method for increase of gas-dynamic stability of operation of air-jet engines. Patent of Ukraine № 46407, MPK F04D 27/00, F02K 1/00, F02K 3/00, F02C 7/00. Appl. № u200905152. Filed 25.05.2009. Bull. № 24, 26.
- Kasandzhan, P. K., Tihonov, N. D., Yanko, A. K. (1983). Teoriia aviatsionnyh dvigatelei. Moscow: Mashchinostroenie, 223.
- Kasakevich, V. V. (1974). Avtokolebaniia (pompazh) v kompresorah. Moscow: Mashchinostroenie, 264.
- Mamedov, B. Sh. (2014). Edinaia teoriia dvizhitelei. Prichiny generirovaniia neustoichivoi raboty turboreaktivnyh dvigatelei pri vslete v usloviiah zharkogo klimata. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 9 (116), 56–62.
- Gorlov, V. (2004). Grazhdanskaia aviatsiia Rossii. Moscow: Voennyi parad, 336.
- Mamedov, B. Sh. (2014). Edinaia teoriia dvizhitelei. Novoe naznachenie i printsip raboty «nulevoi» stupeni kompressora nizkogo davleniia. Aviatsionno-kosmicheskaia tehnika i tehnologiia, 8 (115), 55–60.
- Shchulgin, V. A., Gaisinskii, S. Ya. (1984). Dvuhkonturnye turboreaktivnye dvigateli maloshchumnyh samoletov. Moscow: Mashchinostroenie, 212.
- Karpov, Ya. S., Panasenko, B. A., Ryzhenko, A. I. (2007). Osnovy aerokosmicheskoi tehniki. Kharkiv: KhAI, 656.
- Stechkin, B. S. (1977). Izbrannye trudy. Teoriia teplovyh dvigatelei. Moscow: Nauka, 410.
- Nechaev, Yu. N., Fedorov, R. M. (1977). Teoriia aviatsionnyh gazoturbinnyh dvigatelei. Part 1. Moscow: Mashinostroenie, 311.
- Micheli, M., Kappis, W., Guidati, G., Felderhoff, M. (2009). Compressor Design From Specification to Validation: Application of a Fast and Reliable Process. Volume 7: Turbomachinery, Parts A and B, Paper № GT2009-59217, 365–372. doi:10.1115/gt2009-59217
- Terauchi, K., Kariya, D., Maeda, S., Yoshiura, K. (2005). Redesign of an 11-Stage Axial Compressor for Industrial Gas Turbine. Volume 6: Turbo Expo 2005, Parts A and B, Paper № GT2005-68689, 261–267. doi:10.1115/gt2005-68689
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Борис Шамшадович Мамедов, Ольга Валерьевна Лютова, Светлана Анатольевна Бовкун, Марианна Васильевна Скоробагатая, Елена Борисовна Корниенко, Дмитрий Иванович Харченко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.