Finite element analysis of dynamic state metalworking technological system

Authors

  • Вільям Олександрович Залога Sumy State University, Str. Rimsky-Korsakov, 2, Sumy, Ukraine, 40007, Ukraine https://orcid.org/0000-0001-7444-485X
  • Юрій Володимирович Шаповал Sumy State University, Str. Rimsky-Korsakov, 2, Sumy, Ukraine, 40007, Ukraine https://orcid.org/0000-0003-3546-5978
  • Костянтин Андрійович Дрофа Sumy State University, Str. Rimsky-Korsakov, 2, Sumy, Ukraine, 40007, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2016.71503

Keywords:

finite element method, resonance frequency analysis, turning, vibrations

Abstract

Based on the analysis of the literature it was found that with cutting and turning speed increase during processing (spindle frequency) resonant phenomena that significantly affect the performance of cutting tools and quality (roughness) of finished surface can occur. The aim of the work is to determine the dynamic characteristics of metalworking system on the design phase that is without a full-scale experiment. This paper describes a stand based on constructed 3D model of modernized machine tool mod. 1700VF30 (spindle frequency 10000 rev/min) and the method and algorithm of development of finite-element model of dynamic state of designed 3D models of machine tool is proposed. With the help of developed model the modal analysis of the machine tool mod. 1700VF30 using the method of finite elements that can let to detect the resonant frequencies of oscillations within any range of the setting of the cutting was made.  The finite element method using ANSYS executed a complex research of amplitude-frequency characteristics of constructed 3D model depending on the speed of the spindle rotation and frequency at which resonance phenomena occurs. Adequacy of the developed analytical model of dynamic state of the elements of a manufacturing system based on the upgraded machine tool 1700VF3 was proved experimentally. Results, received with its help differ from the experimental ones less than for 5 %.

Author Biographies

Вільям Олександрович Залога, Sumy State University, Str. Rimsky-Korsakov, 2, Sumy, Ukraine, 40007

Doctor of Technical Sciences, Professor

Department of Mechanical Engineering, Machine Tools

Юрій Володимирович Шаповал, Sumy State University, Str. Rimsky-Korsakov, 2, Sumy, Ukraine, 40007

Teacher

Department of Mechanical Engineering, Machine Tools

Костянтин Андрійович Дрофа, Sumy State University, Str. Rimsky-Korsakov, 2, Sumy, Ukraine, 40007

Department of Mechanical Engineering, Machine Tools

References

  1. Mazur, M. P., Vnukov, Yu. M., Dobroskok, V. L., Zaloha, V. O., Novoselov, Yu. K., Yakubov, F. Ya.; In: Mazur, M. P. (2011). Osnovy teorii rizannia materialiv. Ed. 2. Lviv: Novyi Svit-2000, 422.
  2. Kudinov, V. A. (1967). Dinamika stankov. Moscow: Mashchinostroenie, 367.
  3. Zharkov, I. G. (1986). Vibratsii pri obrabotke lesviinym instrumentom. Leningrad: Mashchinostroenie, 184.
  4. Saloga, V. A., Shapoval, Ju. V. (2015). Vliianie chastoty vrasheniia shchpindelia na kachestvo obrabotannoi poverhnosti pri tochenii. Tezy dopovidei XV vseukrainskoi molodizhnoi naukovo-tekhnichnoi konferentsii «Mashynobuduvannia Ukrainy ochyma molodykh: prohresyvni idei – nauka – vyrobnytstvo», 04-07 lystopada 2015 r. Zhytomyr: ZhDTU, 30–31.
  5. Natarajan, C., Muthu, S., Karuppuswamy, P. (2011). Investigation of cutting parameters of surface roughness for a non-ferrous material using artificial neural network in CNC turning. Journal of Mechanical Engineering Research, Vol. 3, № 1, 1–14.
  6. Shunmugesh, K., Panneerselvam, K., Pramod, M., George Amal. (2014). Optimization of Turning Parameters with Carbide Tool for Surface Roughness Analysis. International Journal of Engineering Research & Technology, Vol. 3, № 6, 103–107.
  7. Syath Abuthakeer, S., Mohanram, P. V., Mohan Kumar, G. (2011). Dynamic and thermal analysis of high speed motorized spindle. International Journal of Applied Engineering Research, Vol. 1, № 4, 864–882.
  8. Ozlu, E., Budak, E. (2010). Analytical Prediction of Stability Limit in Turning Operations. Proceedings of the 9th Workshop on the Modelling of Machining Operations, 99–106.
  9. In: Kikonin, I. K. (1976). Tablitsy fisicheskih velichin. Moscow: Atomisdat, 1008.
  10. In: Naryshchkin, V. N., Korostashchevskii, R. V. (1984). Podshchipniki kacheniia. Moscow: Mashchinostroenie, 280.
  11. The Fundamentals of Modal Testing. (2000). Application Note 243-3. Agilent Technologies. Available: http://www.modalshop.com/techlibrary/Fundamentals%20of%20Modal%20Testing.pdf
  12. Zaloga, V. O., Nahornyi, V. V. (2014). Diahnostuvannia tekhnichnoho stanu metaloobrobnoho verstatu. Vysoki tekhnolohii v mashynobuduvanni, 1 (24), 71–79.
  13. Nahornyi, V. V. (2015). Kontrol' dinamicheskogo povedeniia metalloobrabatyvaiushih tehnologicheskih sistem i metod opredeleniia ih resursa. Sumy, 224.
  14. Liu, D., Zhang, H., Tao, Z., Su, Y. (2011, April 29). Finite Element Analysis of High-Speed Motorized Spindle Based on ANSYS. The Open Mechanical Engineering Journal, Vol. 5, № 1, 1–10. doi:10.2174/1874155x01105010001
  15. Zhang, S. (2012). Dynamic modeling of spindle vibration and surface generation in ultra-precision machining. The Hong Kong Polytechnic University, 254.

Published

2016-05-26

How to Cite

Залога, В. О., Шаповал, Ю. В., & Дрофа, К. А. (2016). Finite element analysis of dynamic state metalworking technological system. Technology Audit and Production Reserves, 3(1(29), 33–39. https://doi.org/10.15587/2312-8372.2016.71503