Development of methods for separation of binarized fragments of etching pits of semiconductor wafer

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.71988

Keywords:

etching pits, dislocation, loop fragments, gallium arsenide, digital image

Abstract

The article is devoted to the search of successful methods for separation of fragments belonging to the supposed etching pits of dislocation loops.

The developed methods are revealed binarized fragments of etching pits among of the many other elements of surface image of a semiconductor wafer.

The filtration method of binarized fragments of etching pits of wafer dislocation uses a roundness index of the specified range, received on the base of reference line width of dislocation loop at a ratio of 1:4. This optional feature allows separating fragments similar to lines of loops of etching pits on the basis of their size and shape.

The method of removing the micro-defects loops reduces the number of fragments by eliminating of loops without signs of loops of etching pits. It is based on the use of the XOR subtraction operation between the binarized image of dislocation areas and the image with accentuated loops of the fragments.

The criteria for allocation of the main significant loop fragments allow form the selection rules for the further processing of binarized image.

The criteria for allocation of the main significant loop fragments, method of binarized fragments filtering, method of removing the loops of micro-defects of the semiconductor wafer are the part of a package of measures to carry out tasks on production management organization and creation of technical diagnostic system of output production quality.

Author Biographies

Андрей Николаевич Самойлов, Kremenchuk Mykhailo Ostohradskyi National University, 39600, 20, Pershotravneva Str., Kremenchuk

Graduate student

Department of Information and Control Systems 

Игорь Васильевич Шевченко, Kremenchuk Mykhailo Ostohradskyi National University, 39600, 20, Pershotravneva Str., Kremenchuk

Doctor of Technical Sciences, Associate Professor

Department of Information and Control Systems

References

  1. Samoilov, A. N., Shevchenko, I. V. (2013). Metody polucheniia konturov na tsifrovyh rastrovyh isobrazheniiah s nechiotkim otobrazheniem dislokatsii v plastinah GaAs. Kompiuterno-intehrovani tekhnolohii: osvita, nauka, vyrobnytstvo,12, 63–69.
  2. Samoilov, A. N. (2014). Issledovanie mediannoi fil'tratsii binarisovannyh konturov dislokatsii plastiny GaAs na rastrovyh tsifrovyh isobrazheniiah. Materialy I Vseukrainskoi naukovo-praktychnoi konferentsii «IT-Perspektyva», 4-5 kvitnia 2014 r., m. Kremenchuk, 10–11.
  3. Samoilov, A. N., Petrenko, V. R. (2012). Sravnenie effektivnosti global'nyh metodov binarisatsii rastrovyh tsvetnyh isobrazhenii. Vestnik KrNU imeni Mihaila Ostrogradskogo, 4 (75), 49–54.
  4. Samoilov, A. N., Shevchenko, I. V. (2013). Metod obnaruzheniia linii konturov v iarkostnyh perepadah predpolagaemyh granei binarisovannogo isobrazheniia sledov dislokatsii na plastinah GaAs. Avtomatisirovannye sistemy upravleniia i pribory avtomatiki, 165, 22–27.
  5. Samoilov, A., Shevchenko, I. (2015). Methods for recovering the dislocations contour line of gallium arsenide wafer of digital image. Eastern-European Journal Of Enterprise Technologies, 3(5(75)), 8–16. doi:10.15587/1729-4061.2015.43326
  6. Bessonov, A. A., Sagashchvili, Yu. V., Markelov, A. S. (1989). Metody i sredstva identifikatsii dinamicheskih ob'ektov. Moscow: Energoatomisdat, 280.
  7. Gonzalez, R., Woods, R. (2006). Digital image processing. Prentice Hall: Pearson Education, 616.
  8. Freeman, H. (1961). On the Encoding of Arbitrary Geometric Configurations. IEEE Transactions on Electronic Computers, EC-10 (2), 260–268. doi:10.1109/tec.1961.5219197
  9. Freeman, H. (1962). On the digital-comрuter classification of geometric line pattern. Proc. Nat Electron. Conf., 18, 312–324.
  10. Zamperoni, P. (1989). Methoden der digitalen Bildsignalverarbeitung. Vieweg+Teubner Verlag, 264. doi:10.1007/978-3-322-83935-0
  11. Skvortsov, A. V. (2002). Trianguliatsiia Delone i eio primenenie. Tomsk: Isdatel'stvo Tomskogo universiteta, 128.
  12. Jähne, B., Haußecker, H., Geißler, P., Hrsg. (1999). Principles of filter design. Ch. 6, 2. San Diego: Academic Press, Computer Vision and Applications, Signal Processing and Pattern Recognition, 125–151.
  13. Gonzalez, R. C., Woods, R. E. (2002). Digital Image Processing. Ed. 2. New Jersey: Prentice-Hall, Inc., 793.
  14. Jian, A. K. (1988). Fundamentals of Digital Image Processing. Pearson, 569.
  15. Rosenfeld, A., Kak, A. C. (1982). Representation. Digital Picture Processing. Elsevier BV, 191–275. doi:10.1016/b978-0-12-597302-1.50010-4
  16. Mehtre, B. M., Kankanhalli, M. S., Wing Foon Lee. (1997, May). Shape measures for content based image retrieval: A comparison. Information Processing & Management, 33 (3), 319–337. doi:10.1016/s0306-4573(96)00069-6
  17. Samoilov, A. N. (2013). Analis adaptivnoi porogovoi obrabotki iarkostnyh perepadov elementov tsifrovogo rastrovogo isobrazheniia. Materialy X Mizhnarodnoi naukovo-praktychnoi konferentsii «Rozvytok naukovykh doslidzhen 2013», 25-27 lystopada 2013 r., m. Poltava, Vol. 5, 26–28.

Published

2016-05-26

How to Cite

Самойлов, А. Н., & Шевченко, И. В. (2016). Development of methods for separation of binarized fragments of etching pits of semiconductor wafer. Technology Audit and Production Reserves, 3(1(29), 60–68. https://doi.org/10.15587/2312-8372.2016.71988