Development of vector-parametric fifth-degree B-spline with control points incident the surface

Authors

  • Александр Михайлович Ковтун Danube Institute of National University «Odessa Maritime Academy», 9, Fanagoriyskaja Str., Izmail, Odessa Region, 68600, Ukraine https://orcid.org/0000-0002-6531-2561

DOI:

https://doi.org/10.15587/2312-8372.2016.72032

Keywords:

vector-parametric spline, B-spline, spline with control points incident the curve, smoothness

Abstract

Studies in the field of geometric modeling are aimed at the development of the already existing ways of describing spline surfaces, because to be a bit inconvenient to construct smooth contours of the existing methods. A method in which the control points belong to the curve is proposed.

Based on previous research the method of B-spline construction is proposed. B-spline is a vector-parametric surface with control points incident (belonging to) the curve based on the fifth-degree splines in compliance with the smoothness of the first to the second order. To do this, the resulting vector-parametric spline r = r(u) will «stretch» to v, in a direction different from the u, which gives an opportunity to build a relevant «portions» of the surface. Further, to obtain a B-spline with full smoothness order it is necessary to ensure the «gluing» of the respective portions of the surface providing the appropriate smoothness by «gluing» line, i. e. ensure equality of the corresponding (first and second) derivatives. However, to achieve full smoothness of second order (i. e., ensure continuity of the second fundamental form across the surface), it is necessary to provide equal mixed derivatives through «gluing» line. Test examples of bicubic splines are given.

Author Biography

Александр Михайлович Ковтун, Danube Institute of National University «Odessa Maritime Academy», 9, Fanagoriyskaja Str., Izmail, Odessa Region, 68600

Candidate of Technical Sciences, Associate Professor

Department of General Technical Subjects 

References

  1. Fox, A., Pratt, M. (1982). Vychislitel'naia geometriia. Translation from English. Moscow: Mir, 304.
  2. Zavialov, Yu. S., Kvasov, B. I., Miroshnichenko, V. L. (1982). Metody splain funktsii. Moscow: Nauka, 352.
  3. Jaklič, G., Kozak, J., Vitrih, V., Žagar, E. (2012). Lagrange geometric interpolation by rational spatial cubic Bézier curves. Computer Aided Geometric Design, 29 (3-4), 175–188. doi:10.1016/j.cagd.2012.01.002
  4. Kovtun, O. (2015). The third degree polynomial spline with the operating points incidental to a curve. Suchasni problemy modeliuvannia, 4, 63–67.
  5. Jaklič, G., Kozak, J., Krajnc, M., Vitrih, V., Žagar, E. (2008). Geometric Lagrange interpolation by planar cubic Pythagorean-hodograph curves. Computer Aided Geometric Design, 25 (9), 720–728. doi:10.1016/j.cagd.2008.07.006
  6. Badaev, Yu. I., Kovtun, A. M. (2011). Spetsial'nye splainy iz polinomov tretei, chetvertoi i piatoi stepenei v geometricheskom modelirovanii. Odessa: Feniks, 315.
  7. Kovtun, O. M. (2015). The third degree polynomial spline with the operating points incidental a curve. Vodnyi transport, 1, 166–170.
  8. Badaiev, Yu. I., Kovtun, O. M. (2003). Aproksymatsiia splainamy na osnovi kryvykh z intsydentnymy tochkamy. Suchasni problemy heometrychnoho modeliuvannia. Pratsi Natsionalnoho universytetu «Lvivska politekhnika» (spetsvypusk). Materialy mizhnarodnoi naukovo-praktychnoi konferentsii. Lviv: Natsionalnyi universytet «Lvivska politekhnika», 75–77.
  9. Badaiev, Yu. I., Kovtun, O. M. (2003). Vektorno-parametrychni sehmenty, poverkhni ta tila za intsydentnymy z nymy tochkamy. Prykladna heometriia ta inzhenerna hrafika, 4 (18), 37–40.
  10. Baye, D. (2015). The Lagrange-mesh method. Physics Reports, 565, 1–107. doi:10.1016/j.physrep.2014.11.006
  11. Chudinov, A. V., Gao, W., Huang, Z., Cai, W., Zhou, Z., Raznikov, V. V., Sulimenkov, I. V. (2016). Interpolational and smoothing cubic spline for mass spectrometry data analysis. International Journal of Mass Spectrometry, 396, 42–47. doi:10.1016/j.ijms.2015.11.008
  12. Kvasov, B. I. (2000). Methods of Shape-Preserving Spline Approximation. World Scientific, 356. doi:10.1142/9789812813381
  13. Matt, M. A. (2012). Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness. Vieweg+Teubner Verlag, 370. doi:10.1007/978-3-8348-2384-7
  14. Jiwari, R. (2015). Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions. Computer Physics Communications, 193, 55–65. doi:10.1016/j.cpc.2015.03.021
  15. Moore, P., Molloy, D. (2014). Efficient energy evaluations for active B-Spline/NURBS surfaces. Computer-Aided Design, 47, 12–31. doi:10.1016/j.cad.2013.08.011

Published

2016-05-26

How to Cite

Ковтун, А. М. (2016). Development of vector-parametric fifth-degree B-spline with control points incident the surface. Technology Audit and Production Reserves, 3(1(29), 17–21. https://doi.org/10.15587/2312-8372.2016.72032