Development of criterion for comparative assessment of executive systems functional actvity

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.74866

Keywords:

assessment criterion, assessment indicator, comparative assessment of the objects, estimation of operations

Abstract

In this paper, the general principles of the comparative assessment of the results of procedural activity for objects of executive systems are developed.

The system of determining the baseline, relying on that provides accounting of all influencing factors and the possibility of developing a common assessment criterion are proved.

An assessment indicator that takes into account all the relevant input and output parameters, and allows comparative assessment of procedural activities of objects of executive systems is developed.

Versatility of developed indicator is demonstrated by the comparative assessment of the professional abilities of the subjects and in the decision of selecting the best variant of equipment.

Also it is developed a method that compensates for the inequality of expert assessments of input products when assessing the functionality of ES objects.

The proposed approach gives the possibility of using common assessment criteria and a common method of reducing the baseline to identify the results of operations of the technical facilities (equipment) and the staff.

Author Biography

Olga Serdiuk, SIHE “Kryvyi Rih National University”, 11, ХХІІ Partz’izdu Str., Kryvyi Rih, Ukraine, 50027

Postgraduate student

Department of computer systems and networks

References

  1. Lutsenko, I., Vihrova, E., Fomovskaya, E., Serdiuk, O. (2016). Development of the method for testing of efficiency criterion of models of simple target operations. Eastern-European Journal Of Enterprise Technologies, 2(4(80)), 42–50. doi:10.15587/1729-4061.2016.66307
  2. Lutsenko, I., Fomovskaya, E., Vikhrova, E., Serdiuk, O. (2016). Development of system operations models hierarchy on the aggregating sign of system mechanisms. Eastern-European Journal Of Enterprise Technologies, 3(2(81)), 39–46. doi:10.15587/1729-4061.2016.71494
  3. Lutsenko, I., Fomovskaya, E., Serdiuk, O. (2016). Determination of the class of dynamic models of target operations. Eastern-European Journal Of Enterprise Technologies, 1(2(79)), 57–63. doi:10.15587/1729-4061.2016.60710
  4. Maiju, V., Lonnqvis, A., Schiuma, G. (2014). Development of key performance indicators and impact assessment for SHOKs. Publication of the Ministry of Employment and the Economy Innovation, 27, 47.
  5. Sun, Y. (2015). A new management model of university scientific research funds based on the BSC. Education Management and Management Science, 303–306.
  6. Vlasov, Yu. A., Liapin, A. N. (2012). Optimisatsiia vybora i effektivnost' ispol'sovaniia diagnosticheskogo oborudovaniia. Vestnik Kusbasskogo gosudarstvennogo tehnicheskogo universiteta, 2 (90), 12–18.
  7. Petuhov, G. B., Yakunin, V. I. (2006). Metodologicheskie osnovy vneshchnego proektirovaniia tselenapravlennyh protsessov i tseleustremlionnyh sistem. Moscow: AST, 504.
  8. Kurlykin, A. S., Halizev, V. N. (2013). Suitable hardware optimization model development for technical offer preparation in a datacenter design. Scientific Journal of KubSAU, 85 (01). Available: http://ej.kubagro.ru/2013/01/pdf/28.pdf
  9. Lutsenko, I., Fomovskaya, E. (2015). Identification of target system operations. The practice of determining the optimal control. Eastern-European Journal of Enterprise Technologies, 6(2(78)), 30–36. doi:10.15587/1729-4061.2015.54432
  10. Savitskaia, G. V. (2009). Analis hosiaistvennoi deiatel'nosti predpriiatiia. Moscow, 536.
  11. Department for Communities and Local Government. (2009). Multi-criteria analysis. London: Eland House, 168.
  12. Chakraborty, S., Banik, D. (2005, June 29). Design of a material handling equipment selection model using analytic hierarchy process. The International Journal of Advanced Manufacturing Technology, Vol. 28, № 11-12, 1237–1245. doi:10.1007/s00170-004-2467-y
  13. Mitiashchin, N. P., Tomashchevskii, Yu. B., Denisov, A. V., Dmitriev, A. A. (2014). Vybor tehnologicheskogo oborudovaniia na osnove nechetkoi ishodnoi informatsii. Vestnik Saratovskogo gosudarstvennogo tehnicheskogo universiteta, Vol. 4, № 1 (77), 133–137.
  14. Sdanovich, M. Yu., Danilova, N. N., Vasil'eva, N. O. (2014). Marketingovoe obosnovanie vybora novogo proisvodstvennogo oborudovaniia. Vestnik Krasnoiarskogo gosudarstvennogo agrarnogo universiteta, 8, 12–16.
  15. Vlasov, Yu. A., Liapin, A. N. (2012). Optimisatsiia vybora i effektivnost' ispol'sovaniia diagnosticheskogo oborudovaniia. Vestnik Kusbasskogo gosudarstvennogo tehnicheskogo universiteta, 2 (90), 12–18.
  16. Barskii, L. A., Plaksin, I. N. (1967). Kriterii optimisatsii rasdelitel'nyh protsessov. Moscow: Nauka, 119.
  17. Barskii, L. A., Kosin, V. S. (1978). Sistemnyi analis v obogashenii polesnyh iskopaemyh. Moscow: Nedra, 486.
  18. Lutsenko, I. (2015). Identification of target system operations. development of global efficiency criterion of target operations. Eastern-European Journal Of Enterprise Technologies, 2(2(74)), 35–40. doi:10.15587/1729-4061.2015.38963
  19. Tsirlin, A. M. (2003). Metody optimisatsii v neobratimoi termodinamike i mikroekonomike. Moscow: FISMATLIT, 416. ISBN 5-9221-0265-6.
  20. Serdiuk, O. (2015). The development of optimization methods for knowledge base enrichment processes. Eureka: Physical Sciences and Engineering, 1, 42–48. doi:10.21303/2461-4262.2015.0007
  21. Serdiuk, O. (2015). Criterion of identification of test steps in training and educational systems. Metallurgical and Mining Industry, 9, 605–608.
  22. Graham, I. (2004). Object-Oriented Methods. Moscow: Williams, 880.

Downloads

Published

2016-07-26

How to Cite

Serdiuk, O. (2016). Development of criterion for comparative assessment of executive systems functional actvity. Technology Audit and Production Reserves, 4(3(30), 40–46. https://doi.org/10.15587/2312-8372.2016.74866