Justification of conditions for unique solvability of matrix equations with two triangular unknowns and mutually inverse coefficients

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.75969

Keywords:

mathematics, mechanics, analysis, equation, matrix, triangular, solvability, theorem, factorization, projection

Abstract

In the article the object of research are the matrix equations. The role of the matrix and the matrix equations in the theoretical and practical issues is well known. In its simplest form it arises in different theoretical and applied problems related to the solution of systems of linear algebraic equations. For example, in mechanics, physics, electrical engineering, hydraulics, economy.

A unique solvability of the two abstract matrix equations is investigated for the next form:

                                                 AX++Y=B,                                             (1)

                                               A-1X+1+Y1–=B,                                          (2)

with unknown lower X+, X+1 and the upper Y, Y1–, triangular matrices and mutually inverse matrices – the coefficients A, A-1. The approach is based on the interpretation of equations (1), (2) as the implementations in the ring of matrices of corresponding equations in the abstract ring with a pair of factorization, based on the basic provisions of the theory of rings and operators. In particular, special developed projections are used. It is characterized by significantly less than the maximum order of determinants of matrices, which have to operate using the proposed approach and its results. It is substantially less than the orders of the determinants that arise in the transition from (1), (2) to systems of linear algebraic equations by equating the corresponding matrix elements in their left and right sides.

The theorem on the unique solvability of these equations with matrix representations of the solutions is formulated and proved, which gives an accurate method for solving specific equations (1), (2) and their corresponding tasks.

An illustrative example is given.

Author Biographies

Татьяна Геннадиевна Войтик, Odessa National Maritime University, Mechnikov str., 4, Odessa, Ukraine, 65029

Assistant

Department of Higher and Applied Mathematics

Геннадий Степанович Полетаев, Odessa State Academy of Buildings and Architecture, Didrihsona str., 4, Odessa, Ukraine, 65029

Candidate of Physical and Mathematical Sciences, Associate Professor

Department of mathematics

References

  1. Poletaev, G. S. (2000). O postanovkah, matrichnyh modeliah nekotoryh obratnyh sadach mehaniki balok i predstavleniiah faktorisovannyh matrits vliianiia. Matematicheskoe modelirovanie v obrasovanii, nauke i promyshchlennosti. St. Petersburg, 146–148.
  2. Poletaev, G. S., Soldatov, L. I. (2004). O modelirovanii nekotoryh sadach mehaniki matrichnymi uravneniiami s treugol'nymi neisvestnymi. Nelineinaia dinamika mehanicheskih i biologicheskih sistem, 2, 133–136.
  3. Poletaev, G. S. (1988). Ob uravneniiah i sistemah odnogo tipa v kol'tsah s faktorisatsionnymi parami. Kyiv, 20.
  4. Poletaev, G. S. (2016). Metod reshcheniia abstraktnyh uravnenii s dvumia neisvestnymi is podkolets faktorisatsionnoi pary. Materialy Mizhnarodnoi naukovo-praktychnoi konferentsii «Matematyka v suchasnomu tekhnichnomu universyteti», 24-25 hrudnia 2015 r. Kyiv, 85–88.
  5. Gahov, F. D., Cherskii, Yu. I. (1978). Uravnenie tipa svertki. Moscow: Nauka, 296.
  6. Krein, M. G. (1958). Integral'nye uravn. na polupriamoi s iadrami, savisiashimi ot rasnosti argumentov. Uspehi matematicheskih nauk, 5 (83), 3–120.
  7. Krein, M. G. (1971). Lineinye uravneniia v banahovom prostranstve. Moscow: Nauka, 104.
  8. Voytik, T. G., Poletaev, G. S., Yatsenko, S. A. (2016). Metod nahozhdeniia ratsional'nyh funktsii s poliusami is rasnyh poluploskostei po uravneniiu s pravil'no faktorisuemym koeffitsientom. Naukovi notatky, 54, 65–70.
  9. Gahov, F. D. (1963). Kraevye sadachi. Moscow: Gos. isd-vo fis.-matem. lit., 640.
  10. Mushelishchvili, N. I. (1968). Singuliarnye integral'nye uravneniia. Moscow: Nauka, 512.
  11. Gantmaher, F. R. (1988). Teoriia matrits. Moscow: Nauka, 549.
  12. Lancaster, P. (1969). Theory of Matrices. NewYork – London: Academic Press Inc., 326.
  13. Daletskii, Yu. L., Krein, M. G. (1970). Ustoichivost' reshchenii differentsial'nyh uravnenii v banahovom prostranstve. Moscow: Nauka, 535.
  14. Bellman, R. (1997). Introduction to Matrix Analysis. Ed. 2. University of Southern California, 403. doi:10.1137/1.9781611971170
  15. Popov, G. Ya., Kerekeshcha, P. V., Kruglov, V. E.; In: Popov, G. Ya. (1976). Metod faktorisatsii i ego chislennaia realisatsiia. Odessa: Odessa State University, 82.
  16. Rapport, I. M. (1949). O nekotoryh «parnyh» integral'nyh i integro-differentsial'nyh uravneniiah. Sbornik trudov Instituta matematiki AN USSR, 12, 102–118.
  17. Mhitarian, S. M. (1968). O nekotoryh ploskih kontaktnyh sadachah teorii uprugosti s uchiotom sil stsepleniia i sviasi s nimi integral'nyh i differentsial'nyh uravnenii. Isvestiia AN Armianskoi SSR. Mehanika, Vol. XXI, № 5-6, 3–20.
  18. Akopian, V. N., Dashchtoian, L. L. (2013). Samknutye reshcheniia nekotoryh smeshchannyh sadach dlia ortotropnoi ploskosti s rasresom. Sovremennye problemy mehaniki deformiruemogo tverdogo tela, differentsial'nyh i integral'nyh uravnenii. Odessa, 12.
  19. Wiener, N., Hopf, E. (1931). Über Eine Klasse Singulärer Integralgleichungen. SemesterBer. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl., 30/32, 696–706.
  20. Voytik, T. G., Poletaev, G. S. (2015). Matrichnye uravneniia s dvumia treugol'nymi neisvestnymi. Naukovi notatky, 49, 13–16.
  21. Voytik, T. G., Poletaev, G. S. (2016). Uravneniia s nizhnei i verhnei neisvestnymi treugol'nymi matritsami i vsaimno obratnymi koeffitsientami. Simnadtsiata mizhnarodna naukova konferentsiia im. akad. M. Kravchuka, 19-20 travnia 2016 r. «II. Alhebra. Heometriia. Matematychnyi analiz». Kyiv, 68–71.
  22. Gelfand, I. M., Raikov, D. A., Shchilov, G. E. (1960). Kommutativnye normirovannye kol'tsa. Moscow: Fismatgis, 316.
  23. Naimark, M. A. (1968). Normirovannye kol'tsa. Moscow: Nauka, 664.
  24. McNabb, A., Schumitzky, A. (1972, March). Factorization of operators – I: Algebraic theory and examples. Journal of Functional Analysis, Vol. 9, 3, 262–295. doi:10.1016/0022-1236(72)90002-x
  25. Poletaev, G. G. (1991, September). Abstract analogue of a dual equation of convolution type in a ring with a factorization pair. Ukrainian Mathematical Journal, Vol. 43, № 9, 1124–1135. doi:10.1007/bf01089213
  26. Nizhnik, L. P. (1973). Obratnaia nestatsionarnaia sadacha rasseianiia. Kyiv: Naukova dumka, 182.

Published

2016-07-26

How to Cite

Войтик, Т. Г., & Полетаев, Г. С. (2016). Justification of conditions for unique solvability of matrix equations with two triangular unknowns and mutually inverse coefficients. Technology Audit and Production Reserves, 4(2(30), 73–77. https://doi.org/10.15587/2312-8372.2016.75969

Issue

Section

Mathematical Modeling: Original Research