Data mining of the risk of natural fires based on geoinformation technologies

Authors

  • Віктор Валентинович Путренко National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremohy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-0239-9241

DOI:

https://doi.org/10.15587/2312-8372.2016.76154

Keywords:

data mining, natural fire, factor analysis, GIS analysis, classification, zoning, risk

Abstract

Natural fires are one of the biggest threats to the economy and population in Ukraine. Due to the limited materials and equipment it is necessary to redistributing them according to the level of danger. Therefore problems of fire risk assessment for the management of fire prevention at the national and regional level remain a problem of management in terms of situational uncertainty.

With a view to its elimination it was proposed based on mathematical tools to conduct data mining classification in Ukraine on grounds of belonging to the fire dangerous area. As the signs were chosen factors influencing the occurrence of natural fires: relief features, climatic characteristics and land cover. As a method was chosen classification features based on the decision tree algorithm C4.5, which allows to use existing classification criteria for classification of the surface cells to a particular class of fire risk.

Further use of the typical tools of GIS based on ArcGis platform allow to obtain the total value of the risk of fire danger based on raster algebra and summarize them for each administrative unit. The implementation of this zoning for Ukraine can detect the most dangerous areas in terms of natural fires and pursue advance training of human resources and preparation of material resources to prevent major damage from fires.

Author Biography

Віктор Валентинович Путренко, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37 Peremohy ave., Kyiv, Ukraine, 03056

Candidate of Geographical Sciences, Senior Researcher

Educational-Scientific Complex «Institute for Applied System Analysis»

References

  1. Kolodiazhnyi, O. A., Luhmann, E., Mashkovskyi, A. H., Potapenko, L. S., Shtepa, Yu. M. (2002). Orhanizatsiia kosmichnoho monitorynhu pozhezh. Kosmichna nauka i tekhnolohiia, Vol. 8, 2-3, 246–248.
  2. Natsionalna dopovid pro stan navkolyshnoho pryrodnoho seredovyshcha v Ukraini u 2011 rotsi. (2012). Kyiv: Ministerstvo ekolohii ta pryrodnykh resursiv Ukrainy, LAT&K, 258.
  3. Yasinsky, F. N., Potiomkina, O. V., Sidorov, S. G., Evseeva, A. V. (2011). Prognosirovanie veroiatnosti vosniknoveniia lesnyh pozharov s pomosh'iu neirosetevogo algoritma na mnogoprotsessornoi vychislitel'noi tehnike. Vestnik IGEU, 2, 1–4.
  4. Atlas of natural hazards & risks of Georgia. (2012). Available: http://drm.cenn.org/index.php/en/
  5. Oneal, C. B., Stuart, J. D., Steven, S., Fox, L. (2006, April). Geographic Analysis of Natural Fire Rotation in the California Redwood Forest During the Suppression Era. Fire Ecology, Vol. 2, № 1, 73–99. doi:10.4996/fireecology.0201073
  6. Jovanovic, R., Bjeljac, Z., Miljkovic, O., Terzic, A. (2013). Spatial analysis and mapping of fire risk zones and vulnerability assessment: Case study mt. Stara planina. Journal of the Geographical Institute Jovan Cvijic, SASA, Vol. 63, № 3, 213–226. doi:10.2298/ijgi1303213j
  7. Brillinger, D. R., Preisler, H. K., Benoit, J. W.; In: Goldstein, D., Speed, T. (2003). Risk assessment: a forest fire example. Statistics and Science: a Festschrift for Terry Speed – IMS Lecture Notes Monograph Series, Vol. 40. Beachwood, OH: Institute of Mathematical Statistics, 177–196. doi:10.1214/lnms/1215091142
  8. Cheng, T., Wang, J. (2006). Applications of spatio-temporal data mining and knowledge for forest fire. Proceedings of the ISPRS Technical Commission VII Mid Term Symposium. Enschede, The Netherlands, 148–153.
  9. Cortez, P., Morais, A. (2007). A Data Mining Approach to Predict Forest Fires using Meteorological Data. Proceedings of the 13th Portuguese Conference on Artificial Intelligence «New trends in artificial intelligence» (EPIA 2007), Guimarães, Portugal, December 2007. Lisboa: APPIA, 512–523.
  10. Özbayoğlu, A. M., Bozer, R. (2012). Estimation of the Burned Area in Forest Fires Using Computational Intelligence Techniques. Procedia Computer Science, Vol. 12, 282–287. doi:10.1016/j.procs.2012.09.070

Published

2016-07-26

How to Cite

Путренко, В. В. (2016). Data mining of the risk of natural fires based on geoinformation technologies. Technology Audit and Production Reserves, 4(3(30), 67–72. https://doi.org/10.15587/2312-8372.2016.76154