Improvement of production by aerosol nanocatalysis technology with mechanical activation of catalyst particles

Authors

  • Марат Аронович Гликин Vladimir Dale Eastern Ukrainian National University, av. Central, 59A, Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-6502-4527
  • Сергей Александрович Кудрявцев Vladimir Dale Eastern Ukrainian National University, av. Central, 59A, Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-7799-714X
  • Ирина Маратовна Гликина Vladimir Dale Eastern Ukrainian National University, av. Central, 59A, Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-2307-1245

DOI:

https://doi.org/10.15587/2312-8372.2016.85475

Keywords:

aerosol nanocatalysis, mechanical activation, heterogeneous catalyst, activity, strength and heat resistance of surface

Abstract

Currently, the chemical and oil industry uses a heterogeneous catalysis with catalyst on support. The results of a large number of studies marked its main drawbacks. They are insufficient strength and heat resistance of supported catalysts. The solution to this problem is to increase the strength of the catalyst support. This article proposes a new future-proof solution. It is the use of the aerosol nanocatalysis technology for the processes of chemical and oil industries. The basic principle of this technology is the total exclusion of the use of the support from industry practices. This principle together with the chemical and mechanical activation of the catalyst showed an increase in the reaction rate and reduction of the catalyst concentration. It also influences the contact time reduction and productivity increase in the main component. Mechanical activation of the catalyst particles by the dispersing material successfully multiply return the catalyst into the reactor. The aerosol nanocatalysis technology has no analogues in the world. It will look at the industrial world in a new way. It is planned in the future to carry out targeted synthesis of chemical processes in the conditions of an aerosol nanocatalysis technology.

Author Biographies

Марат Аронович Гликин, Vladimir Dale Eastern Ukrainian National University, av. Central, 59A, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Professor

Department of Chemical Engineering and Environment

 

Сергей Александрович Кудрявцев, Vladimir Dale Eastern Ukrainian National University, av. Central, 59A, Severodonetsk, Ukraine, 93400

Candidate of Technical Sciences, Associate Professor

Department of Chemical Engineering and Environment

Ирина Маратовна Гликина, Vladimir Dale Eastern Ukrainian National University, av. Central, 59A, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Associate Professor

Department of Chemical Engineering and Environment

References

  1. Satterfield, C. (1980). Heterogeneous Catalysis in Practice. McGraw-Hill, 416.
  2. Кrilov, О. V. (2004). Geterogennyi kataliz. Moscow: Akademkniga, 679.
  3. Glikin, М. А. (2000). Effektivnost' i vzryvobezopasnost' protsessov himicheskoi tehnologii. Kyiv: Print Ekspress, 390.
  4. In: Parmon, V. N. (1997). Akademik Georgii Konstantinovich Boreskov. Ocherki, materialy, vospominaniia. Novosibirsk: IK SO RAN, 460.
  5. Glikin, М. А. (1980). Vliianie himicheskih reaktsii na vzryvoopasnost' tehnologicheskoi sredy. Teoreticheskie osnovy himicheskoi tehnologii, 14 (5), 770–772.
  6. Boreskov, G. K. (1986). Geterogennyi kataliz. Moscow: Nauka, 304.
  7. In: Anderson, R. B. (1968). Experimental Methods in Catalytic Research. New York and London: Academic Press, 498. doi:10.1016/c2013-0-06162-2
  8. Kiperman, S. L. (1991). Kinetic models of heterogeneous catalytic reactions (review). Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 40 (12), 2350–2365.doi:10.1007/bf00959702
  9. Glikin, М. А. (1996). Aerozol'nyi kataliz. Teoreticheskie osnovy himicheskoi tehnologii, 30 (4), 430–435.
  10. Glikin, M. A., Pihtovnikov, B. I., Novitskii, V. S., Memedliaev, Z. N., Kutakova, D. A., Viks, I. N., Prin, E. M.; assignee: Limited Liability Company «Nitrohim». (20.06.1997). Sposob osushchestvleniia gazofaznyh himicheskih protsessov (aerozol'nyi kataliz). Patent 2081695 RU, MKI V 01 J 8/08, 8/32. Appl. № 94011388. Filed 01.04.1994. Bull. № 17, 7.
  11. Boreskov, G. K., Levitskii, E. A., Ismagilov, Z. R. (1984). Szhiganie topliv i kataliticheskie generatory tepla. Rossiiskii himicheskii zhurnal, XXIX (4), 19–25.
  12. Ismagilov, Z. R. (1985). Catalytic heat generators for technological processes. Kagaki to Kogyo, 38 (3), 262.
  13. Levitskii, E. Ya., Glikin, M. A., Kutakova, D. A. et al. (1981). Likvidatsiia vrednyh veshchestv v gazovyh vybrosah pri kataliticheskom szhiganii stochnyh vod. Tez. dokl. III Vsesoiuznoi konf. «Kataliticheskoe okislenie gazov». Novosibirsk, 157–160.
  14. Boreskov, G. K., Matros, Y. S. (1983). Unsteady-State Performance of Heterogeneous Catalytic Reactions. Catalysis Reviews, 25 (4), 551–590. doi:10.1080/01614948308078056
  15. Ismagilov, Z. R., Arendarskii, D. A., Kirichenko, O. A., Barannik, G. B., Moroz, E. M., Ushakov, V. A. (1989). Issledovanie reaktsii i katalizatorov szhiganiia topliv. IV. Genezis fazovogo sostava nanesennyh oksidnyh aliumomednohromovyh katalizatorov. Kinetika i kataliz, 30 (4), 918–926.
  16. Moroz, E. M., Ushakov, V. A., Kosmambetova, G. R., Shepelin, A. P., Levitskii, E. A. (1988). Dispersnost' i sostav termoobrabotannyh aliumoplatinovyh katalizatorov. Kinetika i Kataliz, 29 (6), 1446–1451.
  17. Parmon, V. N., Simonov, A. D., Sadykov, V. A., Tihov, S. F. (2015). Kataliticheskoe szhiganie: dostizheniia i problemy. Fizika goreniia i vzryva, 51 (2), 5–13.
  18. Noskov, A. S., Parmon, V. N. (2008). Kataliticheskie tehnologii dlia rasshireniia toplivno-syr'evoi bazy Rossii za schet netraditsionnyh istochnikov uglerodsoderzhashchego syr'ia. Gazohimiia, 2 (1), 20–24.
  19. Tiul'pinov, A. D. (1986). Predel'nye usloviia gomogennogo goreniia v kataliticheskih generatorah tepla. Moscow, 18.
  20. Kutakova, D. A. (1987). Glubokoe okislenie promyshlennyh othodov v kataliticheskih generatorah tepla. Moscow, 172.
  21. Ermakov, Yu. I., Zaharov, V. A., Kuznetsov, B. N. (1980). Zakreplennye kompleksy na okisnyh nositeliah v katalize. Novosibirsk: SO Nauka, 248.
  22. Khimach, N. Yu., Polunkin, Ye. V. (2012). Nanostrukturovani katalizatory. Kataliz i neftehimiia, 21, 86–98.
  23. Patriliak, K. I., Patriliak, L. K. (2012). Teoriia J. A. Ola i geterogennyi kataliz. Kataliz i neftehimiia, 20, 6–21.
  24. Glikin, M., Kutakova, D., Prin, E. (1999). Unsteady processes and aerosol catalysis. Chemical Engineering Science, 54 (20), 4337–4342. doi:10.1016/s0009-2509(99)00133-5
  25. Frank-Kamenetskii, D. A. (1967). Diffuziia i teploperedacha v himicheskoi kinetike. Moscow: Nauka, 502.
  26. Glikina, І. М. (2005). Osnovy tekhnolohii aerozolnoi nanokatalitychnoi pererobky orhanichnykh spoluk u vibrozridzhenomu shari. Lviv, 162.
  27. Kudryavtsev, S. А. (2006). Osnovy tehnologii polucheniia benzinovoi fraktsii i etilena aerozol'nym nanokatalizom. Lviv, 154.
  28. Riazantsev, O. I., Kardashuk, V. S. (2011). Metody ta prohramno-tekhnichni zasoby avtomatyzatsii keruvannia protsesom aerozolnoho nanokatalizu. Radioelektronika, informatyka, upravlinnia, 1, 164–171.
  29. Glikin, М. А., Kutakova, D. А., Prin, Е. М., Glikina, I. М., Volga, А. I. (2000). Geterogennyi kataliz na poristoi strukture i v aerozole. Kataliz i neftehimiia, 5-6, 92–101.
  30. Prin, Е. М. (2002). Aerozol'nyi kataliz i ego primenenie v okislenii ammiaka i obezvrezhivanii soedinenii sviazannogo azota. Kharkiv,156.
  31. Kascheev, А. S., Glikina, I. М., Kudryavtsev, S. А., Mamedov, B. B. (2012). Issledovanie aktivnosti Si/Zr katalizatora v protsesse krekinga vakuumnogo gazoilia aerozol'nym nanokatalizom. Voprosy himii i himicheskoi tehnologii, 1, 85–89.

Published

2016-11-24

How to Cite

Гликин, М. А., Кудрявцев, С. А., & Гликина, И. М. (2016). Improvement of production by aerosol nanocatalysis technology with mechanical activation of catalyst particles. Technology Audit and Production Reserves, 6(3(32), 4–8. https://doi.org/10.15587/2312-8372.2016.85475

Issue

Section

Technologies of food, light and chemical industry