Determination of flame ionization gas analyzer error
DOI:
https://doi.org/10.15587/2312-8372.2016.87201Keywords:
measurement of hydrocarbons, methane, detector, flame ionization analyzer, errors of measurement channels of gas analyzersAbstract
Flame ionization method is developed for automatic control of hydrocarbons in the atmosphere of the city in real time. This method measures the amount of concentration of hydrocarbon vapors and gases.
In modern gas analyzers of hydrocarbons, excluding methane, there are following main basic schemes:
- Differential measurement scheme with two detectors and one amplifier. One detector gives a signal to the amount of hydrocarbons, other – only to methane.
- Measurement scheme with one detector and one amplifier. Pneumatic scheme works by switching the flow of analyzed air into two streams, one of which is the flow of air through the device of methane separation in each measurement cycle.
- The scheme contains two detectors, two gas blocks, one of which is equipped with a separation column of hydrocarbons and two measuring blocks.
Depending on the conditions and purpose of the application, it is necessary to select the right measuring system of flame ionization analyzer. Determination of the main sources of errors in measuring circuits of flame ionization gas analyzers with various basic schemes allowed conducting theoretical calculation of total errors, roughly estimating their size and selecting the optimal measuring circuit.
According to theoretical calculations, the basic error of differential measurement scheme with two electrometric amplifiers is 7,7 %. The values of basic errors of differential measurement scheme with one amplifier and scheme with one detector and adsorbing device are close to each other and are 10,26 % and 10,24 % respectively. The last measurement scheme, however, is characterized by large additional error due to the influence of often useless measurement parameters on the signal of flame ionization detector and is 18,63 %.
It is determined that the most optimal from considered gas analyzer schemes with the least basic error is differential measurement scheme with two electrometric amplifiers.
References
- Tangiev, B. B. (2010). Nauchnyi ekologo-kriminologicheskii kompleks (NEKK) po obespecheniiu ekologicheskoi bezopasnosti i protivodeistviiu ekoprestupnosti. Saint Petersburg: Yuridicheskii tsentr – Press, 515.
- Prymiskyi, V. P., Zhuzha, A. V. (2013). Stan ta perspektyvy rozvytku polumiano-ionizatsiinoho rozvytku dlia vymiriuvannia kontsentratsii vuhlevodniv. Metrolohiia ta prylady, 2, 45–52.
- Ryzhkov, V. F. (2004). Portativnyi plamenno-ionizatsionnyi gazoanalіzator. Tehnologiia i konstruirovanie v elektronnoi apparature, 1, 27–29.
- Prymiskyi, V. P., Rumbeshta, V. A.; assignee: Private Joint Stock Company «Ukrainian Scientific Research Institute of Analytical Instrumentation». (16.09.2002). Flame-ionization analyzer for ecological monitoring of motor vehicles. Patent of Ukraine № 49063 G01N 2762. Appl. № 99116303. Filed 19.11.1999. Bull. № 9. Available: http://uapatents.com/3-49063-polumyano-ionizacijjnijj-gazoanalizator-ekologichnogo-kontrolyu-avtomobiliv.html
- Zhuzha, A. V. (10.07.2014). Flame-ionization analyzer for ecological monitoring of motor vehicles. Patent of Ukraine № 91533 G01N 2762. Appl. № u 2014 00559. Filed 20.01.2014. Bull. № 13. Available: http://uapatents.com/4-91533-shvidkodiyuchijj-polumyano-ionizacijjnijj-gazoanalizator.html
- Ivasenko, V. M., Prymiskyi, V. P., Korniienko, D. H., Vatavu, A. V., Zhuzha, A. V. (2012). Suchasni zasoby instrumentalnoho kontroliu (hazoanalizatory i hazoanalitychni systemy) vidpratsovanykh haziv avtomobiliv. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Ser. Novi rishennia v suchasnykh tekhnolohiiakh, 68, 135–141.
- Bombaugh, K. J., Freeman, W. R.; assignee: Mine Safety Appliances Co. (26.01.1971). Determination of reactive hydrocarbons in air. Patent US 3558283 A. Filed 09.06.1967. Available: https://www.google.si/patents/US3558283
- Horiba. Explore the future. Available: http://www.horiba.com/ru
- Gazoanalizatory i gazoanaliticheskoe oborudovanie ETEK. Available: http://etek-ltd.ru/
- Sexton, F. W., Michie Jr., R. M., McElroy, F., Thompson, V. (1982). A Comparative Evaluation of Seven Automated Ambient Nonmethane Organic Compound Analyzers. EPA/600/4-82/046 (NTIS PB82230798). Washington, D.C.: U.S. Environmental Protection Agency, 3.
- Vartanov, A. Z., Ruban, A. D. (2009). Metody i pribory kontrolia okruzhaiushchei sredy i ekologicheskogo monitoringa. Moscow: Gornaia kniga, 640.
- Ivasenko, V. M. (2015). Doslidzhennia osnovnykh metrolohichnykh kharakterystyk polumiano-ionizatsiinoho detektora. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy «Kyivskyi politekhnichnyi instytut». Ser. Pryladobuduvannia, 49, 75–81.
- Schenck, H. (1979). Theories of Engineering Experimentation. Ed. 3. CRC Press, 302.
- Lucero, D. P. (1972). Water Vapor Sensitivity Response of Hydrogen Flame Ionization Detectors. Journal of Chromatographic Science, 10 (7), 463–467. doi:10.1093/chromsci/10.7.463
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Віталій Михайлович Івасенко, Тетяна Олександрівна Винниченко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.