Investigation of the response surfaces describing the mathematical model of the influence of temperature and BeO content in the composite materials on the yield and ultimate strength
DOI:
https://doi.org/10.15587/2312-8372.2017.104895Keywords:
ridge analysis, suboptimal values, composite material, beryllium oxide, yield strength, ultimate strength, response surfaceAbstract
The object of research is the dependence of mechanical properties (yield strength and ultimate strength) on the beryllium-based DSCM on the parameters of their operation (temperature regime) and BeO content in the composition of the material. Such dependence can be established on the basis of technological audit of the process, which has the ultimate aim of constructing an analytical description based on the results of production experimental data, for example, in the form of regression equations.
Ridge analysis is chosen for the research. This method allows analyzing the received response surfaces and determining not only the tendency of the dependences of the material properties on the operation parameters and the characteristics of the material itself, but also to more accurately estimate the optimum values. The latter is particularly advantageous from the point of view of optimizing the operation parameters of structures made from these materials, and also from the point of view of the process of their subsequent disposal.
Based on the ridge analysis, the values of the input variables (temperature and BeO content) are chosen, which allow obtaining optimal values of the ultimate strength and yield strength. This makes it possible to obtain sets of values of these factors that can be used in the manufacture, operation and disposal of beryllium-based DSCM.
Thus, it is found that the optimum values of the yield strength, corresponding to a range of values from 130 to 200MPa, are achieved at t=456 °C and BeO content of 1.35 %, as well as t=528 °C and BeO content of 1.08 %.
The optimum values of the ultimate strength, corresponding to a range of values from 180 to 250 MPa are achieved at t=384 °C and BeO content of 1.35 %, as well as t=326 °C and BeO content of 1.845 %.
The obtained results allow to select the optimal performance characteristics of the beryllium-based DSCM, which will ensure its maximum efficiency and at the same time reduce the operating costs, which is economically advantageous.
References
- Brautman, L. J., Krock, R. H. (1975). Composite Materials. New York: Academic Press.
- Fridliander, I. N., Bratuhin, A. G., Gorbunov, P. Z., Gal', V. V., Iatsenko, K. P., Fokanov, A. N. (1996). Al-Be splavy metallicheskie kompozitsionnye materialy shirokogo naznacheniia. Metallovedenie i termicheskaia obrabotka metallov, 9. Available: http://viam.ru/public/files/1996/1996-202052.pdf
- Mouritz, A. (2012). Aluminium alloys for aircraft structures. Introduction to Aerospace Materials, 173–201. doi:10.1533/9780857095152.173
- Oz, T., Karakose, E., Keskin, M. (2013). Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5wt.%Mn–xwt.%Be (x=0, 1, 3, 5) alloys. Materials & Design, 50, 399–412. doi:10.1016/j.matdes.2013.03.024
- Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L., Chen, B. (2016). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59, 41–85. doi:10.1016/j.progpolymsci.2016.03.00
- Biron, M. (2013). Composites. Thermosets and Composites, 299–473. doi:10.1016/b978-1-4557-3124-4.00006-7
- Kovaleva, A. V., Chernyi, A. A. (2008). Kompozitsionnye materialy v tekhnike i issledovanie vozmozhnostei polucheniia izdelii iz raznorodnykh materialov v liteinom proizvodstve. Penza: Penzenskii gosudarstvennyi universitet, 161.
- Baron, C., Springer, H. (2017). Properties of particle phases for metal-matrix-composite design. Data in Brief, 12, 692–708. doi:10.1016/j.dib.2017.04.038
- Santos, A. M. C., Mohammadi, M., Asp, J., Monro, T. M., Afshar, V. S. (2013). Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams. Radiation Measurements, 53-54, 1–7. doi:10.1016/j.radmeas.2013.03.003
- Yuan, P.-F., Xu, J., Jing, F.-Q. (2010). High-pressure meta-stable phase of BeO: A first principle study. Materials Chemistry and Physics, 124 (1), 768–772. doi:10.1016/j.matchemphys.2010.07.056
- Fathalian, A., Moradian, R., Shahrokhi, M. (2013). Optical properties of BeO nanotubes: Ab initio study. Solid State Communications, 156, 1–7. doi:10.1016/j.ssc.2012.11.017
- Malakkal, L., Szpunar, B., Siripurapu, R. K., Zuniga, J. C., Szpunar, J. A. (2017). Thermal conductivity of wurtzite and zinc blende cubic phases of BeO from ab initio calculations. Solid State Sciences, 65, 79–87. doi:10.1016/j.solidstatesciences.2017.01.005
- Yu, B.-R., Yang, J.-W., Guo, H.-Z., Ji, G.-F., Chen, X.-R. (2009). Phase transition and elastic properties of BeO under pressure from first-principles calculations. Physica B: Condensed Matter, 404 (14-15), 1940–1946. doi:10.1016/j.physb.2009.03.015
- Jahn, A., Sommer, M., Ullrich, W., Wickert, M., Henniger, J. (2013). The BeOmax system – Dosimetry using OSL of BeO for several applications. Radiation Measurements, 56, 324–327. doi:10.1016/j.radmeas.2013.01.069
- Groppo, D. P., Caldas, L. V. E. (2014). Luminescent response from BeO exposed to alpha, beta and X radiations. Radiation Measurements, 71, 81–85. doi:10.1016/j.radmeas.2014.07.009
- Wang, B., Wu, E., Wang, Y., Xiong, L., Liu, S. (2015). Activation treatment effects on characteristics of BeO layer and secondary electron emission properties of an activated Cu–Be alloy. Applied Surface Science, 355, 19–25. doi:10.1016/j.apsusc.2015.06.189
- Nieto, J. A., Vega, C. A., Montalvo, T. R., Cabrera, E. T. (2016). Determination of the kinetic parameters of BeO using isothermal decay method. Applied Radiation and Isotopes, 108, 8–11. doi:10.1016/j.apradiso.2015.11.061
- Makarenko, D. M. (2016). Quality management of dispersion-strengthened beryllium-based composite alloy. ScienceRise, 5(2(22)), 29–34. doi:10.15587/2313-8416.2016.69259
- Mohanad, M. K., Kostyk, V., Domin, D., Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2(5(80)), 45–49. doi:10.15587/1729-4061.2016.65454
- Demin, D. (2013). Adaptive modeling in problems of optimal control search termovremennoy cast iron. Eastern-European Journal of Enterprise Technologies, 6(4(66)), 31–37. Available: http://journals.uran.ua/eejet/article/view/19453/17110
- Sira, O., Demin, D. (2009). Otsenivanie parametrov uravneniia regressii v usloviiakh maloi vyborki. Eastern-European Journal of Enterprise Technologies, 6(4(42)), 14–19.
- Raskin, L. G., Demin, D. (2010). Iskusstvennaia ortogonalizatsiia passivnogo eksperimenta v usloviiakh maloi vyborki nechetkikh dannykh. Informacijno-kerujuchi systemy na zaliznychnomu transporti, 1 (80), 20–23.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Dmytro Makarenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.