Investigation of the response surfaces describing the mathematical model of the influence of temperature and BeO content in the composite materials on the yield and ultimate strength

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.104895

Keywords:

ridge analysis, suboptimal values, composite material, beryllium oxide, yield strength, ultimate strength, response surface

Abstract

The object of research is the dependence of mechanical properties (yield strength and ultimate strength) on the beryllium-based DSCM on the parameters of their operation (temperature regime) and BeO content in the composition of the material. Such dependence can be established on the basis of technological audit of the process, which has the ultimate aim of constructing an analytical description based on the results of production experimental data, for example, in the form of regression equations.

Ridge analysis is chosen for the research. This method allows analyzing the received response surfaces and determining not only the tendency of the dependences of the material properties on the operation parameters and the characteristics of the material itself, but also to more accurately estimate the optimum values. The latter is particularly advantageous from the point of view of optimizing the operation parameters of structures made from these materials, and also from the point of view of the process of their subsequent disposal.

Based on the ridge analysis, the values of the input variables (temperature and BeO content) are chosen, which allow obtaining optimal values of the ultimate strength and yield strength. This makes it possible to obtain sets of values of these factors that can be used in the manufacture, operation and disposal of beryllium-based DSCM.

Thus, it is found that the optimum values of the yield strength, corresponding to a range of values from 130 to 200MPa, are achieved at t=456 °C and BeO content of 1.35 %, as well as t=528 °C and BeO content of 1.08 %.

The optimum values of the ultimate strength, corresponding to a range of values from 180 to 250 MPa are achieved at t=384 °C and BeO content of 1.35 %, as well as t=326 °C and BeO content of 1.845 %.

The obtained results allow to select the optimal performance characteristics of the beryllium-based DSCM, which will ensure its maximum efficiency and at the same time reduce the operating costs, which is economically advantageous.

Author Biography

Dmytro Makarenko, Zhukovsky National Aerospace University «Kharkiv Aviation Institute», 17, Chkalovа str., Kharkiv, Ukraine, 61070

Senior Lecturer

Department of Chemistry, Ecology and Expertise Technologies

References

  1. Brautman, L. J., Krock, R. H. (1975). Composite Materials. New York: Academic Press.
  2. Fridliander, I. N., Bratuhin, A. G., Gorbunov, P. Z., Gal', V. V., Iatsenko, K. P., Fokanov, A. N. (1996). Al-Be splavy metallicheskie kompozitsionnye materialy shirokogo naznacheniia. Metallovedenie i termicheskaia obrabotka metallov, 9. Available: http://viam.ru/public/files/1996/1996-202052.pdf
  3. Mouritz, A. (2012). Aluminium alloys for aircraft structures. Introduction to Aerospace Materials, 173–201. doi:10.1533/9780857095152.173
  4. Oz, T., Karakose, E., Keskin, M. (2013). Impact of beryllium additions on thermal and mechanical properties of conventionally solidified and melt-spun Al–4.5wt.%Mn–xwt.%Be (x=0, 1, 3, 5) alloys. Materials & Design, 50, 399–412. doi:10.1016/j.matdes.2013.03.024
  5. Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L., Chen, B. (2016). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59, 41–85. doi:10.1016/j.progpolymsci.2016.03.00
  6. Biron, M. (2013). Composites. Thermosets and Composites, 299–473. doi:10.1016/b978-1-4557-3124-4.00006-7
  7. Kovaleva, A. V., Chernyi, A. A. (2008). Kompozitsionnye materialy v tekhnike i issledovanie vozmozhnostei polucheniia izdelii iz raznorodnykh materialov v liteinom proizvodstve. Penza: Penzenskii gosudarstvennyi universitet, 161.
  8. Baron, C., Springer, H. (2017). Properties of particle phases for metal-matrix-composite design. Data in Brief, 12, 692–708. doi:10.1016/j.dib.2017.04.038
  9. Santos, A. M. C., Mohammadi, M., Asp, J., Monro, T. M., Afshar, V. S. (2013). Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams. Radiation Measurements, 53-54, 1–7. doi:10.1016/j.radmeas.2013.03.003
  10. Yuan, P.-F., Xu, J., Jing, F.-Q. (2010). High-pressure meta-stable phase of BeO: A first principle study. Materials Chemistry and Physics, 124 (1), 768–772. doi:10.1016/j.matchemphys.2010.07.056
  11. Fathalian, A., Moradian, R., Shahrokhi, M. (2013). Optical properties of BeO nanotubes: Ab initio study. Solid State Communications, 156, 1–7. doi:10.1016/j.ssc.2012.11.017
  12. Malakkal, L., Szpunar, B., Siripurapu, R. K., Zuniga, J. C., Szpunar, J. A. (2017). Thermal conductivity of wurtzite and zinc blende cubic phases of BeO from ab initio calculations. Solid State Sciences, 65, 79–87. doi:10.1016/j.solidstatesciences.2017.01.005
  13. Yu, B.-R., Yang, J.-W., Guo, H.-Z., Ji, G.-F., Chen, X.-R. (2009). Phase transition and elastic properties of BeO under pressure from first-principles calculations. Physica B: Condensed Matter, 404 (14-15), 1940–1946. doi:10.1016/j.physb.2009.03.015
  14. Jahn, A., Sommer, M., Ullrich, W., Wickert, M., Henniger, J. (2013). The BeOmax system – Dosimetry using OSL of BeO for several applications. Radiation Measurements, 56, 324–327. doi:10.1016/j.radmeas.2013.01.069
  15. Groppo, D. P., Caldas, L. V. E. (2014). Luminescent response from BeO exposed to alpha, beta and X radiations. Radiation Measurements, 71, 81–85. doi:10.1016/j.radmeas.2014.07.009
  16. Wang, B., Wu, E., Wang, Y., Xiong, L., Liu, S. (2015). Activation treatment effects on characteristics of BeO layer and secondary electron emission properties of an activated Cu–Be alloy. Applied Surface Science, 355, 19–25. doi:10.1016/j.apsusc.2015.06.189
  17. Nieto, J. A., Vega, C. A., Montalvo, T. R., Cabrera, E. T. (2016). Determination of the kinetic parameters of BeO using isothermal decay method. Applied Radiation and Isotopes, 108, 8–11. doi:10.1016/j.apradiso.2015.11.061
  18. Makarenko, D. M. (2016). Quality management of dispersion-strengthened beryllium-based composite alloy. ScienceRise, 5(2(22)), 29–34. doi:10.15587/2313-8416.2016.69259
  19. Mohanad, M. K., Kostyk, V., Domin, D., Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2(5(80)), 45–49. doi:10.15587/1729-4061.2016.65454
  20. Demin, D. (2013). Adaptive modeling in problems of optimal control search termovremennoy cast iron. Eastern-European Journal of Enterprise Technologies, 6(4(66)), 31–37. Available: http://journals.uran.ua/eejet/article/view/19453/17110
  21. Sira, O., Demin, D. (2009). Otsenivanie parametrov uravneniia regressii v usloviiakh maloi vyborki. Eastern-European Journal of Enterprise Technologies, 6(4(42)), 14–19.
  22. Raskin, L. G., Demin, D. (2010). Iskusstvennaia ortogonalizatsiia passivnogo eksperimenta v usloviiakh maloi vyborki nechetkikh dannykh. Informacijno-kerujuchi systemy na zaliznychnomu transporti, 1 (80), 20–23.

Published

2017-05-30

How to Cite

Makarenko, D. (2017). Investigation of the response surfaces describing the mathematical model of the influence of temperature and BeO content in the composite materials on the yield and ultimate strength. Technology Audit and Production Reserves, 3(3(35), 13–17. https://doi.org/10.15587/2312-8372.2017.104895

Issue

Section

Chemical and Technological Systems: Original Research