Forecasting of the performance of the shipboard electric power system on the basis of the artificial neural network

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.108528

Keywords:

forecasting of the state of the shipboard electric power system, coefficient of the generalized parameter, artificial neural network

Abstract

To date, the main limiting factor in development of forecasting systems based on mathematical methods of data processing, which in most cases is reduced to solving linear deterministic multiparameter problems, is the performance of a computer. Therefore, considerable attention is paid to development and research of neural network methods for solving such problems, which is explained by the inherent massively parallel processing of information that allows building high-performance computing systems.

In connection with this, the aim of this work is development of a system for predicting the SEPS performance on the basis of an artificial neural network implemented by the architecture of a multilayer perceptron. The problem of parameter normalization is solved, caused by the fact that the SEPS mode is characterized by parameters of different physical nature that have different dimensions. The task of training an artificial neural network is also solved. As a learning method, the back propagation algorithm is chosen. For the formation of a rational training sample used in the learning of an artificial neural network, mathematical methods of temporary extrapolation are used. The analysis of the obtained results shows that the value of the mean absolute error on the test set is 3.8 %. This allows to judge the possibility of using an artificial neural network to solve the problems of predicting the SEPS state.

Author Biographies

Irina Gvozdeva, National University «Odessa Maritime Academy», 8, Didrikhsona str., Odessa, Ukraine, 65029

Doctor of Technical Sciences, Professor

Department of Ship’s Electrical Equipment and Automation

Valery Lukovtsev, National University «Odessa Maritime Academy», 8, Didrikhsona str., Odessa, Ukraine, 65029

PhD, Associate Professor

Department of Ship’s Electrical Equipment and Automation 

Sergii Tierielnyk, National University «Odessa Maritime Academy», 8, Didrikhsona str., Odessa, Ukraine, 65029

Postgraduate Student

Department of Ship’s Electrical Equipment and Automation

References

  1. MAIB Marine Accident Investigation Branch. Available: http://www.maib.gov.uk
  2. In: Bunn, D. W., Farmer, E. D. (1985). Comparative Models for Electrical Load Forecasting. Wiley, 242.
  3. Zakariukin, V. P., Kriukov, A. V., Raevskii, N. V., Yakovlev, D. A.; In: Kriukov, A. V. (2007). Modelirovanie i prognozirovanie protsessov elektropotrebleniia na zheleznodorozhnom transporte. Irkutsk, 115.
  4. Emelianov, A. S. (1985). Ekonometriia i prognozirovanie. Moscow: Ekonomika, 306.
  5. Singh, A. K., Khatoon, I. S., Muazzam, M., Chaturvedi, D. K. (2013). An Overview of Electricity Demand Forecasting Techniques. Network and Complex Systems. National Conference on Emerging Trends in Electrical, Instrumentation & Communication Engineering, 3 (3), 38–48.
  6. Garde, V. D., Patel, R. R. (1985). Technological forecasting for power generation –A study using the Delphi technique. Long Range Planning, 18 (4), 73–79. doi:10.1016/0024-6301(85)90087-1
  7. Venttsel, E. S. (1999). Teoriia veroiatnostei. Ed. 6. Moscow: Vishcha shkola, 576.
  8. Wailly, O., Heraud, N., Sambatra, E. J. R. (2014). Algebraic Observability Analysis of Electrical Network with Symbolic Computation: Application on MYRTE Electrical Power Plant. IFAC Proceedings Volumes, 47 (3), 1085–1089. doi:10.3182/20140824-6-za-1003.01782
  9. Gordunovsky, V. (2015). A Summation Constraint Method for Linear Programming. Procedia Computer Science, 55, 246–250. doi:10.1016/j.procs.2015.07.039
  10. Box, G. E. P., Jenkins, G. M., Reinsel, G. C., Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. Ed. 5. Wiley, 712.
  11. Smoliak, S. A., Titarenko, B. P. (1980). Ustoichivye metody otsenivaniia. Moscow: Statistika, 208.
  12. Alencar, R. J. N., Bezerra, U. H., Ferreira, A. M. D. (2014). A method to identify inrush currents in power transformers protection based on the differential current gradient. Electric Power Systems Research, 111, 78–84. doi:10.1016/j.epsr.2014.02.009
  13. Mitiushkin, K. G. (1990). Telekontrol' i teleupravlenie v energosistemah. Moscow: Energoatomizdat, 287.
  14. Myzin, A. P. (1994). Metody i modeli prognozirovaniia dlia razvitiia elektroenergeticheskih sistem v usloviiah neopredelionnosti i mnogokriterial'nosti. Novosibirsk, 307.
  15. Kozub, D. J., MacGregor, J. F., Wright, J. D. (1986). Multivariable Control of a Catalytic Tubular Reactor Using Both Wiener-hopf Controller Design and Internal Model Controller Design Approaches. IFAC Proceedings Volumes, 19 (15), 285–293. doi:10.1016/s1474-6670(17)59436-7
  16. Singh, S. K., Sinha, N., Goswami, A. K., Sinha, N. (2016). Several variants of Kalman Filter algorithm for power system harmonic estimation. International Journal of Electrical Power & Energy Systems, 78, 793–800. doi:10.1016/j.ijepes.2015.12.028
  17. Spravochnik po tipovym programmam modelirovaniia. (1980). Kyiv: Tehnika, 184.
  18. Ding, F., Meng, D., Wang, Q. (2015). The model equivalence based parameter estimation methods for Box–Jenkins systems. Journal of the Franklin Institute, 352 (12), 5473–5485. doi:10.1016/j.jfranklin.2015.08.018
  19. Alban, A., Darji, H. A., Imamura, A., Nakayama, M. K. (2017). Efficient Monte Carlo methods for estimating failure probabilities. Reliability Engineering & System Safety, 165, 376–394. doi:10.1016/j.ress.2017.04.001
  20. Theil, H. (1966). Applied Economic Forecasting. Elsevier Science Publishing Co Inc., 503.
  21. Bolshov, L. A., Kanevskii, M. F., Savelieva, E. A. et al. (2004). Prognozirovanie energopotrebleniia: sovremennye podhody i primer issledovaniia. Izvestiia RAN. Energetika, 6, 74–92.
  22. Wang, C., Yan, C., Wang, J., Tian, C., Yu, S. (2017). Parametric optimization of steam cycle in PWR nuclear power plant using improved genetic-simplex algorithm. Applied Thermal Engineering, 125, 830–845. doi:10.1016/j.applthermaleng.2017.07.045
  23. Khan Mashwani, W., Salhi, A., Yeniay, O., Hussian, H., Jan, M. A. (2017). Hybrid non-dominated sorting genetic algorithm with adaptive operators selection. Applied Soft Computing, 56, 1–18. doi:10.1016/j.asoc.2017.01.056
  24. Javidrad, F., Nazari, M. (2017). A new hybrid particle swarm and simulated annealing stochastic optimization method. Applied Soft Computing, 60, 634–654. doi:10.1016/j.asoc.2017.07.023
  25. Gordienko, E. K., Lukianitsa, A. A. (1994). Iskusstvennye neironnye seti I. Osnovnye opredeleniia i modeli. Tehnicheskaia kibernetika, 5, 79–91.
  26. Dorrer, M. G.; In: Gorban, A. N. (1998). Intuitivnoe predskazanie neirosetiami vzaimootnoshenii v gruppe. Metody neiroinformatiki. Krasnoiarsk, 111–129.
  27. Mihailov, M. Yu. (1995). Primenenie iskusstvennyh neironnyh setei dlia kratkosrochnogo prognozirovaniia nagruzki. Metody upravleniia fiziko-tehnicheskimi sistemami energetiki sistemami energetiki v novyh usloviiah. Novosibirsk, 82–86.
  28. Leikin, V. S., Nino, V. P. (1974). Sistemnyi podhod k otsenke sudovyh elektroenergeticheskih kompleksov. Sudostroenie, 3, 41–44.
  29. Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Ed. 2. Prentice Hall, 842.
  30. Aksenov, S. V., Novoseltsev, V. B.; In: Novoseltsev, V. B. (2006). Organizatsiia i ispol'zovanie neironnyh setei (metody i tehnologii). Tomsk: NTL, 128.
  31. Geman, S., Bienenstock, E., Doursat, R. (1992). Neural Networks and the Bias/Variance Dilemma. Neural Computation, 4 (1), 1–58. doi:10.1162/neco.1992.4.1.1
  32. Virianskii, Z. Ya., Kiselev, I. L., Kolesnikov, N. V. (1974). Sudovye sistemy avtomaticheskogo kontrolia (Sistemnyi podhod k proektirovaniiu). Leningrad: Sudostroenie, 254.
  33. Baranov, A. P. (1988). Sudovye avtomatizirovannye elektroenergeticheskie sistemy. Moscow: Transport, 328.
  34. Gaskarov, D. V., Golinkevich, D. V., Mozgalevskii, A. V. (1974). Prognozirovanie tehnicheskogo sostoianiia i nadezhnosti radioelektronnoi apparatury. Moscow: Sovetskoe radio, 224.
  35. NeuroPro: neironnye seti, metody analiza dannyh: ot issledovanii do razrabotok i vnedrenii. Available: http://neuropro.ru/

Published

2017-07-25

How to Cite

Gvozdeva, I., Lukovtsev, V., & Tierielnyk, S. (2017). Forecasting of the performance of the shipboard electric power system on the basis of the artificial neural network. Technology Audit and Production Reserves, 4(1(36), 43–49. https://doi.org/10.15587/2312-8372.2017.108528

Issue

Section

Technology and System of Power Supply: Original Research