Research of operation of liquid-gas ejectors with compact and dispersed jets of liquid

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.109048

Keywords:

liquid-gas ejector, ejection coefficient, locking mode, dispersion flow of the liquid

Abstract

The analysis of equipment for the sulfitation of sugar solutions is carried out. The shortcomings of the operation of a jet sulfitator are identified, for the elimination of which it is necessary to investigate the hydrodynamics of a two-phase flow in an ejector mixing chamber. An experimental setup is made. Ejectors with a compact and dispersed liquid jet are studied in a wide range of geometric characteristics (1.3...11.25). The range of the optimum geometric characteristic of the ejector (4...7) is established, at which the maximum ejection coefficient is reached. The numerical value of this coefficient depends on the supply pressure to the nozzle of the active jet and increases with its increase. At a liquid pressure on the nozzles P = 1.25·105 Pa, the ejection coefficient reaches a numerical value of 2.0. And the Kej for the ejector with a compact jet of liquid is 15...20 % lower than Kej for the ejector with a dispersed jet. The ejector locking mode is detected at low liquid feed pressures, which occurs when the resistances of the underwater gas path are equal and the movement of the water-air emulsion in the mixing chamber of the ejectors is equal. Explain the work of the ejector can be given the early crisis of drop resistance at small (Re≈40...130) values of the Reynolds criterion. For the investigated ejectors, the closing mode of the next one after the liquid supply pressure is 0.14...0.17 MPa.

Author Biographies

Vitaly Ponomarenko, Educational-Scientific Engineering-Technical Institute named after Acad. I. S. Guly, 68, Vladimir str., Kyiv, Ukraine, 01601

PhD, Associate Professor

Department of Technological Equipment and Computer Technology Design

Nicholas Pushanko, Educational-Scientific Engineering-Technical Institute named after Acad. I. S. Guly, 68, Vladimir str., Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Professor

Department of Technological Equipment and Computer Technology Design

Yaroslav Khitriy, Educational-Scientific Engineering-Technical Institute named after Acad. I. S. Guly, 68, Vladimir str., Kyiv, Ukraine, 01601

Postgraduate Student

Department of Technological Equipment and Computer Technology Design

Dmitriy Liulka, Educational-Scientific Engineering-Technical Institute named after Acad. I. S. Guly, 68, Vladimir str., Kyiv, Ukraine, 01601

PhD, Associate Professor

Department of Technological Equipment and Computer Technology Design

Eugene Babko, Educational-Scientific Engineering-Technical Institute named after Acad. I. S. Guly, 68, Vladimir str., Kyiv, Ukraine, 01601

PhD, Associate Professor

Department of Technological Equipment and Computer Technology Design

References

  1. Aleksandrov, V. Yu., Klimovskii, K. K. (2012). Optimal'nye ezhektory (teoriia i raschet). Moscow: Mashinostroenie, 136.
  2. Maguin, A. (1905, May 9). Apparatus for the continous sulfuration of sugar-juices. Patent US 789372 A. Filed March 4, 1904. Available: https://www.google.com/patents/US789372
  3. Razladin, Yu. S., Razladin, S. Yu. (2010). Spravochnoe posobie po ekonomii toplivnyh energoresursov na predpriiatiiah pishchevoi promyshlennosti. Book 1. Proizvodstvo sahara. Kyiv: Osvіta Ukraina, 582.
  4. Vyskrebtsov, V. B. (2003). Utilizatsiia sernistogo angidrida i rashod sery. Sahar, 5, 46–48.
  5. Ponomarenko, V., Pushanko, N., Pushanko, N. (2015). Development of equipment and technological schemes to reduce emissions of sugar factory. Technology Audit and Production Reserves, 4(4(24)), 35–41. doi:10.15587/2312-8372.2015.47018
  6. Grebeniuk, S. M. (2007). Tehnologicheskoe oborudovanie saharnyh zavodov. Moscow: KolosS, 520.
  7. Azrilevich, M. Ya. (1982). Oborudovanie saharnyh zavodov. Ed. 3. Moscow: Legkaia i pishchevaia promyshlennost', 392.
  8. Ponomarenko, V., Pushanko, N. (2014). Ejection devices in mass transfer processes of sugar industry. Saarbrucken: LAP LAMBERT Academic Publishing, 56.
  9. Tsegelskii, V. G. (2003). Dvuhfaznye struinye apparaty. Moscow: MSTU n. a. N. E. Bauman, 408.
  10. Bouhanguel, A., Desevaux, P., Gavignet, E. (2011). Flow visualization in supersonic ejectors using laser tomography techniques. International Journal of Refrigeration, 34 (7), 1633–1640. doi:10.1016/j.ijrefrig.2010.08.017
  11. Riffat, S. B., Jiang, L., Gan, G. (2005). Recent development in ejector technology – a review. International Journal of Ambient Energy, 26 (1), 13–26. doi:10.1080/01430750.2005.9674967
  12. Kandakure, M. T., Gaikar, V. G., Patwardhan, A. W. (2005). Hydrodynamic aspects of ejectors. Chemical Engineering Science, 60 (22), 6391–6402. doi:10.1016/j.ces.2005.04.055
  13. Li, C., Li, Y., Wang, L. (2012). Configuration dependence and optimization of the entrainment performance for gas–gas and gas–liquid ejectors. Applied Thermal Engineering, 48, 237–248. doi:10.1016/j.applthermaleng.2011.11.041
  14. Cramers, P. H. M., Beenackers, A. A. C. (2001). Influence of the ejector configuration, scale and the gas density on the mass transfer characteristics of gas–liquid ejectors. Chemical Engineering Journal, 82 (1–3), 131–141. doi:10.1016/s1385-8947(00)00363-6
  15. Park, B. H., Lim, J. H., Yoon, W. (2008). Fluid dynamics in starting and terminating transients of zero-secondary flow ejector. International Journal of Heat and Fluid Flow, 29 (1), 327–339. doi:10.1016/j.ijheatfluidflow.2007.06.008
  16. Vyskrebtsov, V. B. (2001, May 15). Method of sulfitation of sugar production fluids. Patent UA 39000 A. Appl. No. 2000127519. Filed December 26, 2000. Bull. No. 4. Available: http://uapatents.com/4-39000-sposib-sulfitaci-ridin-cukrovogo-virobnictva.html
  17. Kislov, E. A., Sugak, A. V., Bytev, D. O., Gribanov, A. S. (2005). Optimizatsiia protsessa massoobmena v struinom apparate. Izvestiia VUZov. Seriia «Himiia i himicheskaia tehnologiia», 48 (2), 91–93.
  18. Simakov, N. N. (2004). Krizis soprotivleniia kapel' pri perehodnyh chislah Reinol'dsa v turbulentnom dvuhfaznom potoke fakela raspyla mehanicheskoi forsunki. Zhurnal tehnicheskoi fiziki, 74 (2), 46–51.
  19. Simakov, N. N. (2016). Raschet soprotivleniia i teplootdachi shara obtekaiushchemu gazu v tsilindricheskom kanale. Zhurnal tehnicheskoi fiziki, 86 (9), 32–38.

Published

2017-07-25

How to Cite

Ponomarenko, V., Pushanko, N., Khitriy, Y., Liulka, D., & Babko, E. (2017). Research of operation of liquid-gas ejectors with compact and dispersed jets of liquid. Technology Audit and Production Reserves, 4(1(36), 4–10. https://doi.org/10.15587/2312-8372.2017.109048

Issue

Section

Mechanical Engineering Technology: Original Research