Investigation of structural cast iron hardness for castings of automobile industry on the basis of construction and analysis of regression equation in the factor space «carbon (C) - carbon equivalent (Ceq)»

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.109097

Keywords:

cast iron hardness, structural cast iron, chemical composition of cast iron, regression equation, canonical transformation, combined analysis

Abstract

The object of research is structural iron with lamellar graphite, in which the carbon equivalent (Ceq) is in the range (4.2–4.4) %, and the carbon content (C) in the range (3.42–3.57) %. The aim of research is description of the distribution of the hardness value of structural cast iron of serial meltings in the C–Ceq factor space at fixed values of the Cr–Ni–Cu–Ti alloy content in narrow intervals. It is shown that a polynomial regression equation of the form HB=HB(C, Ceq) can be used to obtain a workable analytical description. It is shown that such structure of the equation and those obtained by the method of least squares corresponding coefficient estimates provide 92 % accuracy of the forecast even with a small sample of data.

On the basis of the canonical transformation of the response surface and its ridge analysis, it is established that it is possible in principle to satisfy different requirements for hardness. So, if the range of the planning area C=(3.42–3.57) % and Ceq=(4.2–4.4) % is chosen as the imposed constraint, then several suboptimal solutions are possible. This is the case if the task of minimizing hardness is not set and the range HB=180–250 satisfies the quality requirements specified by the production conditions. If the priority is hardness minimization, then the suboptimal solution is one and it is like the point of intersection of the constraint line (r=1.414) and the lower ridge line y=y(r). On the basis of this, it is concluded that the suboptimal solutions are multivariant, depending on the requirements of production. A nomogram has been constructed, which makes it possible to select in a rational way the technological regimes of out-of-furnace treatment in the part concerning the adjustment of the chemical composition of the alloy.

Author Biography

Dmitriy Demin, National Technical University «Kharkіv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Foundry Production

References

  1. Lysenko, T. V., Stanovskii, A. L. (2008). Adaptivnoe avtomatizirovannoe sinhroniziruiushchee proektirovanie sistemy «otlivka-peschanaia forma» NTI. Zbirnyk naukovykh prats Odeskoi natsionalnoi morskoi akademii, 13, 82–88.
  2. Hrychikov, V. E., Koteshov, N. P. (1994). Vliianie kombinirovannoi kokil'no-peschanoi liteinoi formy na zatverdevanie i formirovanie makrostruktury v krupnih otlivkah iz vysokoprochnogo chuguna. Liteinoe proizvodstvo, 12, 12.
  3. Ivanova, L. A., Dotsenko, P. V., Prokopovich, I. V., Kasprevich, P. V. (1995). Povyshenie germetichnosti otlivok iz serogo chuguna. Puti povysheniia kachestva i ekonomichnosti liteinyh protsessov. Odessa, 11–13.
  4. Demin, D. (2017). Strength analysis of lamellar graphite cast iron in the «carbon (C) – carbon equivalent (Ceq)» factor space in the range of C=(3.425–3.563) % and Ceq=(4.214–4.372) %. Technology Audit and Production Reserves, 1 (1 (33)), 24–32. doi: http://doi.org/10.15587/2312-8372.2017.93178
  5. Endo, M., Yanase, K. (2014). Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons. Theoretical and Applied Fracture Mechanics, 69, 34–43. doi: http://doi.org/10.1016/j.tafmec.2013.12.005
  6. Cheng, Y., Huang, F., Li, W., Liu, R., Li, G., Wei, J. (2016). Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Construction and Building Materials, 118, 164–170. doi: http://doi.org/10.1016/j.conbuildmat.2016.05.020
  7. Borsato, T., Berto, F., Ferro, P., Carollo, C. (2016). Effect of in-mould inoculant composition on microstructure and fatigue behaviour of heavy section ductile iron castings. Procedia Structural Integrity, 2, 3150–3157. doi: http://doi.org/10.1016/j.prostr.2016.06.393
  8. Fourlakidis, V., Dioszegi, A. (2014). A generic model to predict the ultimate tensile strength in pearlitic lamellar graphite iron. Materials Science and Engineering: A, 618, 161–167. doi: http://doi.org/10.1016/j.msea.2014.08.061
  9. Manasbekov, N. M. (2012). Vliianiia soderzhaniia sery na svoistva sinteticheskogo chuguna. Molodiozh' i nauka: Sbornik materialov VIII Vserossiiskoi nauchno-tehnicheskoi konferentsii studentov, aspirantov i molodyh uchionyh, posviashchennoi 155-letiiu so dnia rozhdeniia K. E. Tsiolkovskogo. Krasnoyarsk: Siberian Federal University. Available: http://conf.sfu-kras.ru/sites/mn2012/section37.html
  10. Bai, Y., Luan, Y., Song, N., Kang, X., Li, D., Li, Y. (2012). Chemical Compositions, Microstructure and Mechanical Properties of Roll Core used Ductile Iron in Centrifugal Casting Composite Rolls. Journal of Materials Science & Technology, 28 (9), 853–858. doi: http://doi.org/10.1016/s1005-0302(12)60142-x
  11. Hrychikov, V. E. (1997). K voprosu obrazovaniia sharovidnogo grafita pri modifitsirovanii chuguna magniem. Liteinoe proizvodstvo, 2, 5–7.
  12. Elkem ASA Research. Modifikator Superseed®Extra Inoculant. (2003). ITB «Litio Ukrainy», 12 (40).
  13. Elkem ASA Research. Modifikator Reseed®Inoculant. (2004). ITB «Litio Ukrainy», 7 (47).
  14. Elkem ASA Research. Modifikator SMZ®Inoculant. (2004). ITB «Litio Ukrainy», 5 (45).
  15. Bondarchuk, A. A., Matveev, M. G., Polianskii, Yu. A. (2007). Modeli upravleniia tverdost'iu metalla v usloviiah stohasticheskoi i nechetkoi neopredelennosti. Sistemy upravleniia i informatsionnye tehnologii, 4.1, 124–128.
  16. Bondarchuk, A. A., Matveev, M. G. (2007). Modeli vybora sostava v sisteme «sostav-svoistvo». Materialy XX mezhdunarodnoi nauchnoi konferentsii «Matematicheskie metody v tehnike i tehnologiiah». Vol. 2. Yaroslavl: Yaroslavl State Technical University, 139–140.
  17. Demin, D. (2017). Synthesis of optimal control of technological processes based on a multialternative parametric description of the final state. Eastern-European Journal of Enterprise Technologies, 3 (4 (87)), 51–63. doi: http://doi.org/10.15587/1729-4061.2017.105294
  18. Demin, D. A., Pelikh, V. F., Ponomarenko, O. I. (1995). Optimization of the method of adjustment of chemical composition of flake graphite iron. Litejnoe Proizvodstvo, 7-8, 42–43.
  19. Demin, D. A., Pelikh, V. F., Ponomarenko, O. I. (1998). Complex alloying of grey cast iron. Litejnoe Proizvodstvo, 10, 18–19.
  20. Mohanad, M. K., Kostyk, V., Domin, D., Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2 (5 (80)), 45–49. doi: http://doi.org/10.15587/1729-4061.2016.65454

Published

2018-01-23

How to Cite

Demin, D. (2018). Investigation of structural cast iron hardness for castings of automobile industry on the basis of construction and analysis of regression equation in the factor space «carbon (C) - carbon equivalent (Ceq)». Technology Audit and Production Reserves, 3(1(41), 29–36. https://doi.org/10.15587/2312-8372.2018.109097

Issue

Section

Metallurgical Technology: Original Research