Identification of the parameters of the cable production process

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.112270

Keywords:

parametric identification, integrated identification method, electrical engineering systems, electrical cables

Abstract

The object of research is the process of producing electric cables with polymer insulation for ultrahigh voltages. One of the most problematic places is the presence in the contours of the regulation of the thickness of insulation layers, the noise of measuring the speeds of worms of extruders and the diameters of the insulation layers, and also the time delay. The noisiness of useful signals and the time delay adversely affect the accuracy of layer thickness control and the speed of regulation and can lead to loss of system stability. To solve this problem, a parametric identification method is proposed, which under real conditions of noisy measurements of control object variables gives an estimate close to the exact values of the parameters.

A modified least squares method is used, which in the situation of noisy input and output signals provides an unbiased estimate parameters, and a smaller spread rating than conventional least squares method. This is due to the fact that the proposed method makes it possible to reduce the spread of the quadratic functional by additional averaging on the set of quasi-static independent functionals.

In comparison with the analogous well-known least squares method, it provides an increase in the accuracy of identifying parameters in conditions of noiselessness of not only output but also input signals. The introduction of research results in systems of adaptive control of the thickness of polymer insulation layers in the production of cables for ultra-high voltage will improve product quality and improve production efficiency.

Author Biographies

Mykola Ostroverkhov, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Head of Department

Department of Theoretical Electrical Engineering

Anton Silvestrov, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Theoretical Electrical Engineering

Galyna Kryvoboka, Vinnitsa College of the National University of Food Technologies, 38, Privokzalnaya str., Vinnitsa, Ukraine, 21100

Senior Lecturer

Cycle Commission of Informatics and Computer Technology

References

  1. Shidlovskii, A. K., Shcherba, A. A., Zolotarev, V. M., Podoltsev, A. D., Kucheriavaia, I. N. (2013). Kabeli s polimernoi izoliatsiei na sverhvysokie napriazheniia. Kyiv: Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 551.
  2. Vahedy, V. (2006). Polymer insulated high voltage cables. IEEE Electrical Insulation Magazine, 22 (3), 13–18. doi:10.1109/mei.2006.1639025
  3. Bikineeva, Yu. L., Gromakov, E. I., Pavlov, V. M., Malyshenko, A. M. (2009). Integrirovannaia sistema avtomatizatsii kabel'nogo proizvodstva. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 314 (5), 69–74.
  4. Silvestrov, A. M., Ostroverkhov, M. Ya., Skrynnik, O. M. (2016). Systemy i metody identyfikatsii elektrotekhnichnykh obiektiv. Kyiv: National Academy of Sciences of Ukraine, 324.
  5. In: Egupov, N. D. (2000). Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniia. Moscow: MSTU n. a. N. E. Bauman, 748.
  6. Walter, E., Pronzato, L. (1997). Identification of Parametric Models from Experimental Data. London: Communications and Control Engineering, 413.
  7. Ljung, L. (1999). System Identification: Theory for the User. Ed. 2. Prentice Hall, 672.
  8. Nelles, O. (2001). Nonlinear System Identification. Berlin, Heidelberg: Springer, 785. doi:10.1007/978-3-662-04323-3
  9. Pintelon, R., Schoukens, J. (2012). System Identification: A Frequency Domain Approach. Ed. 2. Wiley-IEEE Press, 788. doi:10.1002/9781118287422
  10. Kuz’menko, A. A. (2012). Nonlinear adaptive control of a shipboard power plant turbine. Journal of Computer and Systems Sciences International, 51 (4), 512–525. doi:10.1134/s1064230712030069
  11. Billings, S. A. (2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Wiley, 574. doi:10.1002/9781118535561
  12. Ginsberg, K. S. (2015). The problem of structure identification for the purpose of design of an automatic control system. Proceedings of the X International Conference «System Identification and Control Problems. SICPRO‘15», Moscow, January 26–29, 2015, 43–80.
  13. Ljung, L. (2017). System Identification Toolbox. Getting Started Guide. The MathWorks, Inc., 226.

Published

2017-09-21

How to Cite

Ostroverkhov, M., Silvestrov, A., & Kryvoboka, G. (2017). Identification of the parameters of the cable production process. Technology Audit and Production Reserves, 5(1(37), 29–34. https://doi.org/10.15587/2312-8372.2017.112270

Issue

Section

Electrical Engineering and Industrial Electronics: Original Research