Justification of the calculation methods of the main parameters of vortex chambers
DOI:
https://doi.org/10.15587/2312-8372.2017.112782Keywords:
vortex apparatus, environment, disperse flow, gas flow, gas velocityAbstract
The object of research is vortex dust collectors – apparatus in which hydrodynamic regimes are realized. Advantages of using vortex apparatus: work with gases of high temperature, high degree of purification; regulation of the process of gas cleaning from dust due to regulating the secondary air flow. Among the disadvantages of vortex dust collectors are: high hydraulic resistance, the need for powerful blowing apparatus, as well as difficult operation and installation. Apparatus for swirling the flow have a different design and, depending on the gas flow rate, pressure and physicochemical properties of the gas flow at the inlet to the cleaning apparatus, this or that hydrodynamic regime is created in it. When designing vortex chambers, the following design parameters must be observed: Ds/D»0.8; Di/Ds»0.5; Dw/D»0.5¸0.8; the inclination angle of the vortex blades at the inlet of the main flow is b»30¸60º; the inclination angle of the secondary flow nozzles is a»30¸45º. When calculating and designing a vortex chamber, it is necessary to fulfill the conditions for the constancy of the tangential velocity of the total flow along the entire length of the working cavity of the apparatus, ensuring the maximum possible efficiency of its functioning.
Analysis of the obtained results for justification of the methods for calculating the basic parameters of the vortex chambers indicates the expediency of using such methods for calculating gas cleaning equipment.
When implementing the process of cleaning dust-gas flows in vortex apparatus, not only the processes of agglomeration of dust are observed, but also the destruction of gas toxicants.
Mathematical dependencies are considered to allow make predictive estimations to select the conditions of the dry dust removal process and to select the design parameters of the vortex chamber. This opens prospects for the introduction of vortex apparatus in order to reduce the industrial negative impact on the environment, namely the atmosphere.
References
- Konovalov, V. I., Orlov, A. Yu., Kudra, T. (2012). Design Calculation of Ranque-Hilsch Vortex Tubes. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta, 18 (1), 74−107.
- Batluk, V. A., Proskurina, I. V., Liashenyk, A. V. (2010). Matematychna model protsesu ochyshchennia zapylenoho potoku u vidtsentrovo-inertsiinykh pylovlovliuvachakh. Promyslova hidravlika i pnevmatyka, 1 (27), 31–36.
- Landau, L. D. (1988). Teoreticheskaia fizika. Vol. VI. Gidrodinamika. Moscow: Nauka, 736.
- Shakerin, S. (2010). Vortex Apparatus and Demonstrations. The Physics Teacher, 48 (5), 316–318. doi:10.1119/1.3393063
- Iliescu, M. S., Ciocan, G. D., Avellan, F. (2008). Analysis of the Cavitating Draft Tube Vortex in a Francis Turbine Using Particle Image Velocimetry Measurements in Two-Phase Flow. Journal of Fluids Engineering, 130 (2), 021105. doi:10.1115/1.2813052
- Turik, V. N., Babenko, V. V., Voskoboinikov, V. A., Voskoboinikov, A. V. (2009). Formirovanie vihrei gertlera v vihrevoi kamere. Promyslova hidravlika i pnevmatyka, 3 (25), 31–36.
- Pirashvili, Sh. A. (2013). Vihrevoi effekt. Vol. 1. Fizicheskoe iavlenie, eksperiment, teoreticheskoe modelirovanie.Moscow: Nauchtehlitizdat, 337.
- Proskurina, I. V. (2009). Pryntsypove nove v metodakh ochystky povitria vid pylu v protsesakh vydobuvannia koksu z kamer koksovykh batarei. Eastern-European Journal of Enterprise Technologies, 4(9 (40)), 12–15. Available at: http://journals.uran.ua/eejet/article/view/22271/19949
- Bona, C., Palenzuela-Luque, C., Bona-Casas, C. (2009). Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics, 783. Berlin, Heidelberg: Springer, 214. doi:10.1007/978-3-642-01164-1
- Pitak, I. V. (2010). Issledovanie protsessa mokrogo ulavlivaniia pyli v rotornom vihrevom apparate. Visnyk natsionalnoho tekhnichnoho universytetu «KhPI», 17, 135–140.
- Thakare, H. R., Monde, A., Parekh, A. D. (2015). Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review. Renewable and Sustainable Energy Reviews, 52, 1043–1071. doi:10.1016/j.rser.2015.07.198
- Bogomolov, A., Sergina, N., Kondratenko, T. (2016). On Inertial Systems, Dust Cleaning and Dust Removal Equipment, and Work Areas in the Production of Aerated Concrete from the Hopper Suction Apparatus CSF. Procedia Engineering, 150, 2036–2041. doi:10.1016/j.proeng.2016.07.290
- Dekterev, A. A., Gavrilov, A. A., Minakov, A. A. (2010). Sovremennye vozmozhnosti CFD SIGMAFOW dlia resheniia teplofizicheskih zadach. Sovremennaia nauka, 2 (4), 117–122.
- Pitak, I. (2014). Study of experimental-industrial design of rotary vortex machine. Technology Audit and Production Reserves, 3( 2(17)), 33–38. doi:10.15587/2312-8372.2014.26212
- Tovazhnianskyi, L. L., Shaporev, V. P., Pitak, I. V. et al. (2011). Mashyny i aparaty u khimichnykh, kharchovykh i pererobnykh vyrobnytstvakh. Kharkiv: Kolehium, 610.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Serhii Briankin, Inna Pitak, Valery Shaporev, Oleg Pitak
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.