Investigation of rheo-mechanical properties of cement suspensions activated in a hydrodynamic cavitator

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.119479

Keywords:

hydrodynamic cavitator, dynamic viscosity, cavitation treatment, compressive strength, cement-water suspension

Abstract

The object of research is cement suspensions activated in a hydrodynamic cavitator. One of the most problematic places of the proposed method of activation is the slowing of the kinetics of the strength of astringents on days 2 and 7 of hardening. It is possible to speed up the set of strength by studying the processes of structure formation occurring in activated suspensions and hardening mixtures, and also to enhance physical effects by improving the design of the cavitator and the mixing chamber.

During the study, activated water and 10 % cement-water suspension are used. After 10 minutes of cavitation treatment at pressures of 0.63–1.4 MPa and a temperature of 28–32 °C, the pH of the medium increases (pH+7.56) and decreases by a factor of 10.38 times the dynamic viscosity of the suspensions. This is due to the fact that the increase in pressure and temperature in the cement-water suspension contributes to the intensification of the dispersion of cement particles in the frequency range 700–800 Hz and the passage of intensive mass-transfer processes in the frequency range 1.9–3.5 kHz, leading to the formation of primary crystallization structures.

Due to this, it is possible to obtain dilatant liquids with a viscosity of 160 to 273.5 cP and control the rate of agitation in the speed range from 50 to 200 min-1. Compared to similar activation methods, the approach under study provides an increase in brand strength of 1.14 times compared to an unactivated cement system and contributes to a decrease in the amount of Portland cement from 10 to 14 %.

Author Biographies

Volodymyr Martyntsev, Kyiv National University of Construction and Architecture, 31, Povitroflotsky ave., Kyiv, Ukraine, 03037

Postgraduate Student

Department of Machinery and Equipment Manufacturing Processes

Sergii Guzii, Kyiv National University of Construction and Architecture, 31, Povitroflotsky ave., Kyiv, Ukraine, 03037

PhD, Senior Researcher

V. D. Glukhovsky Scientific Research Institute for Binders and Materials

Ivan Nazarenko, Kyiv National University of Construction and Architecture, 31, Povitroflotsky ave., Kyiv, Ukraine, 03037

Doctor of Technical Sciences, Professor

Department of Machinery and Equipment Manufacturing Processes

Valentyn Glyva, National Aviation University, 1, Cosmonaut Komarov ave., Kyiv, Ukraine, 02000

Doctor of Technical Sciences, Professor

Department of Civil and Industrial Safety

Olena Guzii, Kyiv National University of Construction and Architecture, 31, Povitroflotsky ave., Kyiv, Ukraine, 03037

Technician

V. D. Glukhovsky Scientific Research Institute for Binders and Materials

References

  1. Ajaronok, V. V., Goncharik, S. V., Chubrik, N. I., Belous, N. H., Rodtsevich, S. P., Koshevar, V. D., Rubanik, V. V., Mahanovskaia, O. N., Orlovich, A. I. (2011). Akusto-radiovolnovaia aktivatsiia vody zatvoreniia portlandtsementnyh sistem. Elektronnaia obrabotka materialov, 47 (5), 50–59.
  2. Kasatkina, V. I., Fedosov, S. V., Akulova, M. V. (2007). Vliianie mehanomagnitnoi aktivatsii vodnyh sistem na svoistva betona. Stroitel'nye materialy, 11, 58–59.
  3. Pomazkin, V. A. (2003). Fizicheskaia aktivatsiia vody zatvoreniia betonnyh smesei. Stroitel'nye materialy, 2, 14–16.
  4. Pomazkin, V. A., Makeeva, A. A. (2001). Perspektivnye napravleniia primeneniia magnitnoi aktivatsii. Vestnik Orenburgskogo gosudarstvennogo universiteta, 1, 109–114.
  5. Taylor, H. F. W. (1997). Cement chemistry. Thomas Telford Publishing, 459. doi:10.1680/cc.25929
  6. Ratinov, V. B., Rozenberg, T. I. (1978). Dobavki v beton. Moscow: Stroiizdat, 190.
  7. Kudiakov, A. I., Petrov, A. G., Petrov, G. G., Ikonnikova, K. V. (2012). Uluchshenie kachestva tsementnogo kamnia putem mnogochastotnoi ul'trazvukovoi aktivatsii vody zatvoreniia. Vestnik TGASU, 3, 143–152.
  8. Batrakov, V. G. (1998). Modifitsirovannye betony. Moscow: Stroiizdat, 748.
  9. Ramachandran, V. S. (1997). Concrete Admixtures Handbook, Second Edition: Properties, Science and Technology (Building Materials Science Series). William Andrew, 1183.
  10. Dolinskii, A. A., Shurchkova, Yu. A. (2013). Voda v usloviiah obrabotki putem diskretno-impul'snogo vvoda energii. Dopovidi Natsionalnoi akademii nauk Ukrainy, 9, 93–100.
  11. Akopyan, S. N., Airapetyan, S. N. (2005). A study of the specific conductivity of water exposed to constant magnetic field, electromagnetic field, and low-frequency mechanical vibration. Biophysics, 50 (2), 255–259.
  12. Stas, I. E., Mihailova, A. P., Bessonova, A. P. (2006). Vliianie vysokochastotnogo elektromagnitnogo polia na fiziko-himicheskie svoistva distillirovannoi vody. Vestnik Tomskogo gosudarstvennogo universiteta, 62, 43–51.
  13. Kulagin, V. A. (2004). Metody i sredstva tehnologicheskoi obrabotki mnogokomponentnyh sred s ispol'zovaniem effektov kavitatsii. Krasnoiarsk, 406.
  14. Margulis, M. A. (1984). Osnovy zvukohimii (himicheskie reaktsii v akusticheskih poliah). Moscow: Vyssha shkola, 272.
  15. Nazarenko, I., Martyntsev, V., Guzii, S. (2017). Intensification of hydrodynamic cavitation processes for obtaining astringents when preparing concrete mixture. MOTROL. Commission of Motorization and Energetics in Agriculture, 19 (3), 89–93.
  16. Vitenko, T. N., Gumnitskii, Ya. M. (2007). Mehanizm aktiviruiushchego deistviia gidrodinamicheskoi kavitatsii na vodu. Himiia i tehnologiia vody, 29 (5), 422–432.
  17. Promtov, M. A., Aleshin, A. V., Kolesnikova, M. M., Karpov, D. S. (2015). Cavitation Treatment for Wastewater Disinfection. Vestnik Tambovskogo Gosudarstvennogo Tehnicheskogo Universiteta, 21 (1), 105–111. doi:10.17277/vestnik.2015.01.pp.105-111
  18. Kirsanov, E. A., Matveenko, V. N. (2016). Nen'iutonovskoe povedenie strukturirovannyh sistem. Moscow: TEHNOSFERA, 384.
  19. Sovalov, I. G. (1963). Metody aktivatsii tsementov i vliianie aktivatsii na svoistva betonov. Moscow: TsBTI NIIOMTP, 41.
  20. Lamekin, N. S. (2000). Kavitatsiia: teoriia i primenenie. Moscow: Rusaki, 246.
  21. Zibnitskaia, N. E., Zhivetev, D. I., Mashkin, A. N. (2005). Perspektivy aktivirovaniia tsementnyh viazhushchih v tehnologii betonov. Trudy NGASU, 8 (2 (32)), 87–91.
  22. Guzii, S. G., Terenchuk, S. A. (2010). Issledovaniia fizicheskih svoistv shchelochnyh aliumosilikatnyh suspenzii posle kavitatsionnoi obrabotki. Vestnik NTU «HPI». Himiia, himicheskaia tehnologiia ta ekologiia, 65, 119–126.
  23. Krivenko, P. V., Guzii, S., Hela, R. (2017). The Influence of Cavitation Treatment on Nano Structuring of Alkali Aluminosilicate Binder for Intumescent Coatings. Materials Science Forum, 908, 63–70. doi:10.4028/www.scientific.net/msf.908.63
  24. Saksena, T. K., Nyborg, W. L. (1970). Sonoluminescence from Stable Cavitation. The Journal of Chemical Physics, 53 (5), 1722–1734. doi:10.1063/1.1674249
  25. Ozonek, J. (2012). Application of Hydrodynamic Cavitation in Environmental Engineering. London: CRC Press, 144. doi:10.1201/b11825
  26. Krivenko, P., Guziy, S., Abdullah Al Musa, J. (2015). The Influence of Cavitation Treatment on Amorphization of Kaolinite in the Dispersion of the «Kaolin–Na2O·nSiO2·mH2O–NaOH–H2O» Composition. Calcined Clays for Sustainable Concrete. RILEM Bookseries. Netherlands: Springer, 387–393. doi:10.1007/978-94-017-9939-3_48
  27. Glyva, V. A., Delas, M. I., Yeremenko, B. M. (2013). Neperervnyi akustychnyi kontrol ta identyfikatsiia trishchynoutvorennia v metalevykh konstruktsiiakh. Management of Development of Complex Systems, 15, 115–118.
  28. Smirnov, A. I. (2001). Generatsiia akusticheskih kolebanii v himicheskih reaktsiiah i fiziko-himicheskih protsessah. Rossiiskii himicheskii zhurnal, 45, 29–34.
  29. Semashko, R. A., Shport, V. I., Marin, B. I. et al.; In: Semashko, N. A. (2002). Akusticheskaia emissiia v eksperimental'nom materialovedenii. Moscow: Mashinostroenie, 240.
  30. Volkov, A. I., Zharskii, I. M. (2005). Bol'shoi himicheskii spravochnik. Minsk: Sovremennaia shkola, 608.
  31. Kumar, J. K., Pandit, A. B. (2010). Cavitation – a New Horizon in Water Disinfection. Water disinfection by ultrasonic and hydrodynamic cavitation. Verlag: VDM, 304.
  32. Gogate, P. R. (2007). Application of cavitational reactors for water disinfection: Current status and path forward. Journal of Environmental Management, 85 (4), 801–815. doi:10.1016/j.jenvman.2007.07.001
  33. Frolov, Yu. G. (1982). Kurs kolloidnoi himii. Moscow: Himiia, 400.

Published

2017-11-30

How to Cite

Martyntsev, V., Guzii, S., Nazarenko, I., Glyva, V., & Guzii, O. (2017). Investigation of rheo-mechanical properties of cement suspensions activated in a hydrodynamic cavitator. Technology Audit and Production Reserves, 6(3(38), 18–25. https://doi.org/10.15587/2312-8372.2017.119479

Issue

Section

Chemical and Technological Systems: Original Research