Simulation of partial discharges under influence of impulse voltage

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.123309

Keywords:

circuit simulation, partial discharge, impulse voltage, higher voltage harmonics

Abstract

The object of research is an equivalent circuit for a dielectric with a weakened insulation (for example, with a gas cavity) with a partial discharge. The test with partial discharge measurement by application of alternating voltage is one of the main methods of diagnostics and non-destructive tests. According to GOST 1516.2, the application of impulse test voltage does not necessarily end with a breakdown of the electrical equipment insulation or the absence of breakdown. There may be a partial breakdown of insulation, in which not all insulation of electrical equipment will be damaged, but only some of its part. It is quite difficult to detect such damage in accordance with GOST 1516.2, but registration of partial discharges will allow this to be detected by increasing their intensity.

The use of existing technical means for measuring the characteristics of partial discharges at alternating voltage is not acceptable for the task in question. Therefore, it is preliminary necessary to carry out computer simulation of partial discharges when the impulse voltage is applied.

A circuit simulation model of a dielectric with a gas cavity with partial discharge has been created. It is shown how, by means of a combination of various elements, to simulate the breakdown of a gas cavity. The operability of the model under the influence of alternating voltage is checked. It is confirmed that voltage harmonic distortions lead to an increase in the number of partial discharges. A study of the model is carried out when it is subjected to a full lightning voltage impulse. As a result, it has been established that partial discharges occur in the gas cavity both at the impulse front and at its tail.

Diagnosis of the insulation condition using the measurement of the partial discharge characteristics under the influence of impulse voltage will be more informative. In particular, it will allow to detect partial breakdowns of insulation that occur during impulse tests and are absent in standard tests with application of alternating voltage. To carry out such measurements it is necessary to develop new techniques, equipment and diagnostic procedures.

Author Biographies

Yevgeniy Trotsenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of High Voltage Engineering and Electrophysics

Volodymyr Brzhezitsky, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of High Voltage Engineering and Electrophysics

Olexandr Protsenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of High Voltage Engineering and Electrophysics

Vadim Chumack, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Electromechanics

Yaroslav Haran, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Assistant

Department of High Voltage Engineering and Electrophysics

References

  1. Brzhezitsky, V. О., Scherba, A. A., Podoltsev, A. D., Trotsenko, Ye. A., Shevchenko, S. Yu., Haran, Ya. A., Atarod, S. (2011). A Study of the Causes of Electric Overlapping of the Middle Phase Insulator String of the Overhead Power Line. Research Bulletin of National Technical University of Ukraine «Kyiv Polytechnic Institute», 6, 36–41.
  2. Eigner, A., Rethmeier, K. (2016). An overview on the current status of partial discharge measurements on AC high voltage cable accessories. IEEE Electrical Insulation Magazine, 32 (2), 48–55. doi:10.1109/mei.2016.7414231
  3. Gemant, A., Philippoff, W. (1932). Die Funkenstrecke mit Vorkondensator. Zeitschrift für Technische Physik, 13 (9), 425–430.
  4. Lemke, E. (2012). A critical review of partial-discharge models. IEEE Electrical Insulation Magazine, 28 (6), 11–16. doi:10.1109/mei.2012.6340519
  5. Florkowski, M., Florkowska, B. (2006). Distortion of partial-discharge images caused by high-voltage harmonics. IEE Proceedings – Generation, Transmission and Distribution, 153 (2), 171–180. doi:10.1049/ip-gtd:20050008
  6. Florkowski, M., Florkowska, B., Furgal, J., Zydron, P. (2013). Impact of high voltage harmonics on interpretation of partial discharge patterns. IEEE Transactions on Dielectrics and Electrical Insulation, 20 (6), 2009–2016. doi:10.1109/tdei.2013.6678848
  7. Li, Y., Mu, H.-B., Deng, J.-B., Zhang, G.-J., Wang, S.-H. (2013). Partial discharge characteristics of oil/polypropylene film with a needle-plate electrode excited by impulse voltages. 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 1225–1228. doi:10.1109/ceidp.2013.6748256
  8. Deng, J., Wang, M., Zhou, Y., Zhou, Z., Zhang, Y., Zhang, L., Liu, X. (2016). Partial discharge characteristics of uniform gap in oil-impregnated paper insulation under switching impulse voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 23 (6), 3584–3592. doi:10.1109/tdei.2016.005508
  9. Do, T., Lesaint, O., Auge, J.-L. (2008). Streamers and partial discharge mechanisms in silicone gel under impulse and AC voltages. IEEE Transactions on Dielectrics and Electrical Insulation, 15 (6), 1526–1534. doi:10.1109/tdei.2008.4712654
  10. Vdoviko, V. P. (2007). Chastichnye razriady v diagnostirovanii vysokovol'tnogo oborudovaniia. Novosibirsk: Nauka, 155.
  11. Gunawardana, S. D. M. S., Kanchana, A. A. T., Wijesingha, P. M., Perera, H. A. P. B., Samarasinghe, R., Lucas, J. R. (2015). A Matlab Simulink Model for a Partial Discharge Measuring System. 2015 Electrical Engineering Conference (EECon), 29–34.
  12. Pahomov, A. I. (2005). Metody i sredstva diagnostiki izoliatsii asinhronnyh dvigatelei sel'skohoziaistvennogo proizvodstva na osnove chastichnyh razriadov. Krasnodar, 32.
  13. Beyer, M., Boeck, W., Möller, K., Zaengl, W. (1986). Hochspannungstechnik: Theoretische und praktische Grundlagen. Springer-Verlag Berlin Heidelberg, 362. doi:10.1007/978-3-642-61633-4
  14. Micro-Cap 11. Electronic Circuit Analysis Program. Reference Manual. (2014). Sunnyvale, CA: Spectrum Software, 1040. Available at: http://www.spectrum-soft.com/down/rm11.pdf
  15. Trotsenko, Y., Brzhezitsky, V., Masluchenko, I. (2017). Circuit simulation of electrical breakdown in air using Kind's equal-area criterion. Technology audit and production reserves, 3 (1 (35)), 44–49. doi:10.15587/2312-8372.2017.102240
  16. Babicheva, A. A., Protsenko, O. R., Trotsenko, Ye. O. (2016). Modeliuvannia proboiu izoliatsiinoho promizhku iz zadanoiu volt-sekundnoiu kharakterystykoiu. Mizhnarodnyi naukovo-tekhnichnyi zhurnal molodykh uchenykh, aspirantiv i studentiv «Suchasni problemy elektroenerhotekhniky ta avtomatyky», 357–359.
  17. Brzhezitsky, V., Trotsenko, Y., Haran, Y. (2017). Analysis and comparison of metal-oxide surge arrester models. Technology audit and production reserves, 6 (1 (38)), 40–46. doi:10.15587/2312-8372.2017.117836

Published

2017-12-28

How to Cite

Trotsenko, Y., Brzhezitsky, V., Protsenko, O., Chumack, V., & Haran, Y. (2017). Simulation of partial discharges under influence of impulse voltage. Technology Audit and Production Reserves, 1(1(39), 36–41. https://doi.org/10.15587/2312-8372.2018.123309

Issue

Section

Electrical Engineering and Industrial Electronics: Original Research