Increasing the accuracy of the non-contact temperature measurement in the case of energy audits of different objects

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.124030

Keywords:

energy audit using thermal imagers, matrix radiation detector, radiation coefficient, measurement accuracy

Abstract

The object of research is the process of thermal inspection of enclosing structures with the help of a thermal imager. One of the most problematic places of thermal imaging energy is the presence of a significant methodological error. The reason for this is a large number of factors affecting the process of measuring the temperature of the surfaces of objects in thermal imaging diagnostics. In the course of the study, methods were used to analyze and isolate the factors that have the greatest effect on the thermogram of the investigated object.

Results are obtained on the evaluation of the influence degree of each influencing factor on the measurement result and the total methodical error from simultaneous influence of all influencing factors is estimated. The total methodical error of thermal imaging energy surveys (up to 4 %) is estimated. This is due to the fact that the proposed methods for improving the accuracy of energy audit have a number of features, in particular, the result of energy audit largely depends on the experience and qualification of the operator. But the use of the proposed recommendations allows the operator to make measurements at a high professional level. Thanks to this, it is possible to improve the accuracy of the energy audit. In comparison with similar known energy audit methods, the proposed method makes it possible: to reduce the methodical error of thermal imaging energy surveys, to increase the energy efficiency of buildings and to reduce the cost of their heating.

Author Biographies

Grygorii Cherepashchuk, National Aerospace University named after Zhukovsky «Kharkiv Aviation Institute», 17, Chkalov str., Kharkiv, Ukraine, 61070

PhD, Professor

Department of Aviation Devices and Measuring

Evgeniy Kalashnikov, National Aerospace University named after Zhukovsky «Kharkiv Aviation Institute», 17, Chkalov str., Kharkiv, Ukraine, 61070

PhD, Associate Professor

Department of Aviation Devices and Measuring

Alexander Nazarov, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Technologists of Machine Building and Repair of Machines

Vitalii Siroklyn, National Aerospace University named after Zhukovsky «Kharkiv Aviation Institute», 17, Chkalov str., Kharkiv, Ukraine, 61070

PhD, Associate Professor

Department of Aviation Devices and Measuring

References

  1. Baza danykh «Zakonodavstvo Ukrainy». Pro enerhozberezhennia. Law of Ukraine No. 74/94-VR from July 1, 1994. Verkhovna Rada Ukrainy. Available at: http://zakon3.rada.gov.ua/laws/show/74/94-%D0%B2%D1%80?lang=uk
  2. DBN V.2.6­31:2006. Konstruktsiibudynkiv i sporud. Teplova izoliatsiia budivel. (2006). Kyiv. Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=6919
  3. DSTU­NBA.2.2­5:2007. Nastanova z rozroblennia ta skladannia enerhetychnoho pasporta budynkiv pry novomu budivnytstvi ta rekonstruktsii. (2008). Kyiv: Minrehionbud Ukrainy, 44.
  4. DSTU B EN 13187:2011. Teplovi kharakterystyky budivel. Yakisne vyiavlennia teplovykh vidmov v ohorodzhuvalnykh konstruktsiiakh. Infrachervonyi metod. (2011). Kyiv: Minrehionbud Ukrainy, 33.
  5. DSTU B V.2.6-101:2010. Metod vyznachennia oporu teploperedachi ohorodzhuvalnykh konstruktsii. (2010). Kyiv: Minrehionbud Ukrainy, 84.
  6. DSTU 2820-94. Teploviziini systemy. Terminy ta vyznachennia. (1994). Introduced: 1996-01-01. Kyiv: DerzhstandartUkrainy, 27.
  7. Vavilov, V. P. (2009). Infrakrasnaya termografiya i teplovoy kontrol. Moscow: Spektr, 544.
  8. Skripal, A. V., Sagaydachnyi, A. A., Usanov, D. A. (2009). Teplovizionnaya biomeditsinskaya diagnostika. Saratov, 118.
  9. Afonin, A. V., Nyuport, R. K., Polyakov, V. S. et al.; Nyuport, R. K., Tadzhibaev, A. I. (Eds.). (2004). Osnovy infrakrasnoy termografii. Saint Petersburg: Izdatel'stvo PEIPK, 240.
  10. Gossorg, J. (1988). Infrakrasnaya termografiya. Osnovy, tekhnika, primenenie. Moscow: Mir, 416.
  11. Levshina, B. C., Novitskiy, P. V. (1983). Elektricheskie izmereniya fizicheskikh velichin. Izmeritel'nye preobrazovateli. Leningrad: Energoatomizdat, 320.
  12. Sizov, F. F. (2015). IR-photoelectronics: photon or thermal detectors? Outlooks. Sensor Electronics and Мicrosystem Technologies, 12 (1), 26–52. doi:10.18524/1815-7459.2015.1.104447
  13. Tohyama, S., Sasaki, T., Endoh, T., Sano, M., Kato, K., Kurashina, S. et al. (2013). Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure. Optical Engineering, 52 (12), 123105. doi:10.1117/1.oe.52.12.123105
  14. Korotaev, V. V., Melnikov, G. S., Mikheev, S. V. et al. (2012). Osnovy teplovideniya. Saint Petersburg: NIU ITMO, 122.
  15. Evtikhiev, N. N., Kupershmidt, Ya. A., Papulovskiy, V. F., Skugorov, V. N. (1990). Izmerenie elektricheskikh i neelektricheskikh velichin. Moscow: Energoatomizdat, 352.
  16. Voytsekhovskiy, A. V., Izhnin, I. I., Savchin, V. P., Vakiv, N. M. (2013). Fizicheskie osnovy poluprovodnikovoy fotoelektroniki. Tomsk: Izdatel'skiy Dom Tomskogo gosudarstvennogo universiteta, 560.
  17. Tompkins, U., Uebster, J. (Eds.). (1992). Sopryazhenie datchikov i ustroystv vvoda dannykh s komp'yuterami IBM PC. Moscow: Mir, 592.
  18. Ilyushin, V. A. (2003). Mnogoelementnye fotopriemnye ustroystva i teplovizory. Novosibirsk: Izdatel'stvo NGTU, 57.
  19. Proshkin, S. S. (2014). K voprosu o tochnosti izmereniya temperatury s pomoshh'yu teplovizora. Vestnik mezhdunarodnoy akademii kholoda, 1, 51–54.
  20. Vavilov, V. P., Larioshina, I. A. (2012). Metodicheskie pogreshnosti teplovizionnogoenergoaudita stroitel'nykh sooruzheniy. Vestnik nauki Sibiri, 5 (6), 49–53.
  21. Vavilov, V. P. (2010). Pessimisticheskiy aspekt teplovizionnogoenergoaudita stroitel'nykh sooruzheniy. Defektoskopiya, 12, 49–54.
  22. Frunze, A. V. (2012). Metodicheskie pogreshnosti energeticheskikh pirometrov i sposoby ikh minimizatsii. Metrologiya, 7, 19–38.
  23. Enyushin, V. N., Kraynov, D. V. (2013). O vliyanii izluchatel'noy sposobnosti poverkhnosti issleduemogo obekta na tochnost' izmereniya temperatur pri teplovizionnom obsledovanii. Izvestiya KTASU, 1 (23), 99–103.
  24. Golofeeva, M. A., Levinskiy, A. S., Tonkonogiy, V. M. (2016). Povyshenie tochnosti izmereniya temperatury s pomoshh'yu priborov infrakrasnoy tekhniki. High technologies in machine engineering, 1 (26), 14–18.
  25. Levinskiy, A. S., Golofeeva, M. A., Ryabushenko, Yu. A. (2016). The improving the accuracy of temperature measurement through devices of the infrared technology. Technologes of informations are in education, science and production, 2 (13), 153–158.
  26. Ivanova, G. M., Kuznetsov, N. D., Chistyakov, V. S. (2005). Teplotekhnicheskie izmereniya i pribory. Moscow: Izdatel'stvo MEI, 460.
  27. Kulakov, M. V. (1983). Tekhnologicheskie izmereniya i pribory dlya khimicheskikh proizvodstv. Moscow: Mashinostroenie, 424.
  28. Oleynik, B. M., Lazdina, S. I., Zhagullo, O. M. (1987). Pribory i metody temperaturnykh izmereniy. Moscow: Izdatel'stvo standartov, 296.
  29. Preobrazhenskiy, V. P. (1978). Teplotekhnicheskie izmereniya i pribory. Moscow: Energiya, 704.
  30. Polyakov, V. S. (1990). Primenenie teplovizionnykh priemnikov dlya vyyavleniya defektov vysokovol'tnogo oborudovaniya. Metodicheskie ukazaniya po kontrolyu oborudovaniya teplovizorami. Leningrad: PEIPK, 57.
  31. Galanov, E. K., Filatov, M. K. (2009). Metrologicheskie voprosy izmereniya temperatury poverkhnostey beskontaktnym metodom IK pirometrii. Opticheskiy zhurnal, 76 (3), 44–47.
  32. Gobrey, R. M., Chernov, V. F., Udod, E. I. (2007). Diagnostirovanie elektroustanovok 0.4–750 kV sredstvami infrakrasnoy tekhniki. Kyiv: KVІTS, 374.

Published

2017-12-28

How to Cite

Cherepashchuk, G., Kalashnikov, E., Nazarov, A., & Siroklyn, V. (2017). Increasing the accuracy of the non-contact temperature measurement in the case of energy audits of different objects. Technology Audit and Production Reserves, 1(1(39), 55–61. https://doi.org/10.15587/2312-8372.2018.124030

Issue

Section

Technology and System of Power Supply: Original Research