Research of the peculiarities of plasma-electrolytic treatment of AK12M2MgN piston alloy with formation of ceramic-like coatings

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.124188

Keywords:

АК12М2МgN piston alloy, plasma-electrolytic oxidation, piston silumin, ceramic-like coating

Abstract

The object of research is the processes of the piston alloy AK12M2MgH treatment by the method of plasma electrolytic oxidation (PEO) with the formation of ceramic underlying coatings. One of the most problematic places is the influence of the chemical composition of the Al-Si alloy on the process of treatment and formation of ceramic coatings. It is established that electrochemical technologies are widely used to modify the surface of silumins by forming coating of various composition and purpose.

In the course of the study it was shown that PEO of piston silumin should be carried out in alkaline complex electrolytes with the addition of manganese and/or cobalt salts. This makes it possible to homogenize the surface layer of the alloy by composition, to reduce the content of its alloying components and to create conditions for the formation of a uniform oxide coating with incorporation of the admissible components.

It has been established that oxidation in pyrophosphate cobaltous solution allows obtaining mosaic structures of blue-violet color with cobalt content up to 24 at %. PEO silumin in the manganous alkaline electrolyte provides the formation of a brown-black ceramic-like layer with manganese content up to 35 at %. Consecutive PEO treatment in these solutions leads to the formation of a mixed fine-dispersed porous oxide coating with a total content of dopant 25–30 at %. Based on the research results, it has been proposed to oxidize the piston silumin in a regime of incident power to form uniform coatings with a high content of dopant.

Obtained oxide systems have a developed surface and a significant content of catalytically active components. In comparison with the known methods of PEO treatment of piston silumin, the silicon content in the surface oxide layers does not exceed 3 at %, which is one of the requirements for catalytically active materials.

The ceramics-like coatings show high catalytic activity in model oxidation reactions of CO and benzene and reduce the emission of toxic gas emissions from internal combustion engines. The proposed systems are promising for use in intracylindrical catalysis technologies and improving the fuel economy of engines.

Author Biographies

Ann Karakurkchi, National Technical University «Kharkіv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

PhD, Head of the Research Laboratory

Mykola Sakhnenko, National Technical University «Kharkіv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of the Department

Department of Physical Chemistry

Maryna Ved, National Technical University «Kharkіv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of General and Inorganic Chemistry

Igor Parsadanov, National Technical University «Kharkіv Polytechnic Institute», 2, Kyrpychova str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Internal Combustion Engines

References

  1. Belov, N. A. (2010). Fazovyi sostav promyshlennykh i perspektivnykh alyuminievykh splavov. Moscow: Izdatelskiy dom MISiS, 511.
  2. Glazoff, M. V., Zolotorevsky, V. S., Belov, N. A. (2007). Casting Aluminum Alloys. Oxford: Elsiever, 544. doi:10.1016/b978-0-08-045370-5.x5001-9
  3. Sakhnenko, M. D., Ved, M. V., Karakurkchi, H. V., Yermolenko, I. Yu., Zyubanova, S. I. (2013). Resursozaoshchadzhuval'na tekhnolohiya vidnovlennya znoshenykh detaley. Intehrovani tekhnolohiyi ta resursozberezhennya, 2, 9–13.
  4. Kolmykov, D. V., Honcharov, A. N. (2012). Kombynyrovannye metody uprochnenyia. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu, 6 (24), 46–50.
  5. Mazurenko, Ye. A., Herasymchuk, A. I., Ovsiannykov, V. P. (2001). Khimichne osadzhennia z hazovoi fazy, syntez funktsionalnykh materialiv (ohliad). Fizyka i khimiia tverdoho tila, 2 (3), 339–349.
  6. Bobzin, K., Ernst, F., Richardt, K., Schlaefer, T., Verpoort, C., Flores, G. (2008). Thermal spraying of cylinder bores with the Plasma Transferred Wire Arc process. Surface and Coatings Technology, 202 (18), 4438–4443. doi:10.1016/j.surfcoat.2008.04.023
  7. Nosov, A. S., Meleshin, V. V., Tovmasyan, A. B., Babich, A. G. (2017). Obzor tehnologicheskih meropriyatiy, napravlennyih na povyishenie nadezhnosti tsilindro-porshnevoy gruppyi dvigatelya vnutrennego sgoraniya. Sovremennyie materialyi, tehnika i tehnologii, 3 (11), 80–85.
  8. Okada, A. (2010). Innovative materials for automotive industry. New York: Nova Science Publishers, 147.
  9. Sakhnenko, N., Ved, M., Karakurkchi, A., Galak, A. (2016). A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. Eastern-European Journal of Enterprise Technologies, 3 (5 (81)), 37–43. doi:10.15587/1729-4061.2016.69390
  10. Yar-Mukhamedova, G. Sh., Ved, M. V., Karakurkchi, A. V., Sakhnenko, N. D. (2017). Mixed alumina and cobalt containing plasma electrolytic oxide coatings. IOP Conference Series: Materials Science and Engineering, 213. doi:10.1088/1757-899x/213/1/012020
  11. Nemenenok, B. M., Kalinichenko, V. A., Sadoha, M. A., Gutko, V. I. (2005). Povyishenie resursa rabotyi porshney dvigateley vnutrennego sgoraniya. Lite i metallurgiya, 2 (34), 175–178.
  12. Rudnev, V. S., Lukiyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 307, 1219–1235. doi:10.1016/j.surfcoat.2016.07.060
  13. Ved, M. V., Sahnenko, N. D., Karakurkchi, A. V., Ermolenko, I. Yu. (2014). Electroplating and functional properties of Fe-Mo and Fe-Mo-W coatings. Voprosyi himii i himicheskoy tehnologii, 5–6 (98), 53–60.
  14. Gupta, P., Tenhundfeld, G., Daigle, E. O., Ryabkov, D. (2007). Electrolytic plasma technology: Science and engineering–An overview. Surface and Coatings Technology, 201 (21), 8746–8760. doi:10.1016/j.surfcoat.2006.11.023
  15. Rogov, A. B., Slonova, A. I., Shayapov, V. R. (2012). Peculiarities of iron-containing microplasma coating deposition on aluminum in homogeneous electrolyte. Applied Surface Science, 261, 647–652. doi:10.1016/j.apsusc.2012.08.075
  16. Borisov, A. M., Krit, B. L., Lyudin, V. B., Morozova, N. V., Suminov, I. V., Apelfeld, A. V. (2016). Microarc oxidation in slurry electrolytes: A review. Surface Engineering and Applied Electrochemistry, 52 (1), 50–78. doi:10.3103/s106837551601004x
  17. Malyshev, V. N., Zorin, K. M. (2007). Features of microarc oxidation coatings formation technology in slurry electrolytes. Applied Surface Science, 254 (5), 1511–1516. doi:10.1016/j.apsusc.2007.07.079
  18. Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi:10.15587/1729-4061.2017.97550
  19. Parsadanov, I. V., Sakhnenko, M. D., Khyzhnyak, V. O., Karakurkchi, H. V. (2016). Improving the environmental performance of engines by intra-cylinder neutralization of toxic exhaust gases. Internal Combustion Engines, 2, 63–67. doi:10.20998/0419-8719.2016.2.12
  20. Ved, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Myrna, T. Yu. (2017). Functional mixed cobalt and aluminum oxide coatings for environmental safety. Functional Materials, 24 (2), 303–310. doi:10.15407/fm24.02.303
  21. Sakhnenko, N. D., Ved, M. V., Androshchuk, D. S., Korniy, S. A. (2016). Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy. Surface Engineering and Applied Electrochemistry, 52 (2), 145–151. doi:10.3103/s1068375516020113
  22. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi:10.15587/1729-4061.2017.109770
  23. Xu, F., Xia, Y., Li, G. (2009). The mechanism of PEO process on Al–Si alloys with the bulk primary silicon. Applied Surface Science, 255 (23), 9531–9538. doi:10.1016/j.apsusc.2009.07.090
  24. Wang, P., Li, J. P., Guo, Y. C., Yang, Z., Wang, J. L. (2016). Ceramic coating formation on high Si containing Al alloy by PEO process. Surface Engineering, 32 (6), 428–434. doi:10.1179/1743294415y.0000000003
  25. Dudareva, N. Y., Abramova, M. M. (2016). The Structure of Plasma-Electrolytic Coating Formed on Al–Si alloys by the Micro-Arc Oxidation Method. Protection of Metals and Physical Chemistry of Surfaces, 52 (1), 128–132. doi:10.1134/s2070205116010093
  26. Xue, W., Shi, X., Hua, M., Li, Y. (2007). Preparation of anti-corrosion films by microarc oxidation on an Al–Si alloy. Applied Surface Science, 253 (14), 6118–6124. doi:10.1016/j.apsusc.2007.01.018
  27. Dai, L., Li, W., Zhang, G., Fu, N., Duan, Q. (2017). Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. IOP Conference Series: Materials Science and Engineering, 167, 012063. doi:10.1088/1757-899x/167/1/012063
  28. Rogov, A. B. (2015). Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with edta 4–complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions. Materials Chemistry and Physics, 167, 136–144. doi:10.1016/j.matchemphys.2015.10.020
  29. Boguta, D. L., Rudnev, V. S., Yarovaya, T. P., Kaidalova, T. A., Gordienko, P. S. (2002). On Composition of Anodic-Spark Coatings Formed on Aluminum Alloys in Electrolytes with Polyphosphate Complexes of Metals. Russian Journal of Applied Chemistry, 75 (10), 1605–1608. doi:10.1023/a:1022263331315
  30. Rudnev, V. S. (2008). Multiphase anodic layers and prospects of their application. Protection of Metals, 44 (3), 263–272. doi:10.1134/s0033173208030089
  31. Krishtal, M. M., Yasnikov, I. S., Ivashin, P. V., Polunin, A. V. (2012). O primenenii tehnologii mikrodugovogo oksidirovaniya dlya remonta i vosstanovleniya izdeliy iz siluminov. Aviatsionnaya i raketno-kosmicheskaya tehnika, 3 (34), 225–228.
  32. Krishtal, M. M., Ivashin, P. V., Kolomiets, P. V. (2012). Ispolzovanie tehnologii mikrodugovogo oksidirovaniya pri razrabotke DVS s blokom tsilindrov iz alyuminievogo splava. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 12 (4), 242–246.
  33. Dudareva, N., Kal’shchikov, R., Dombrovskii, O., Butusov, I. (2015). Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method. Science and Education of the Bauman MSTU, 15 (5), 115–125. doi:10.7463/0515.0774148
  34. Butusov, I., Dudareva, N. (2013). Influence of micro-arc oxidation on durability of IC-engine’s piston. Science and Education of the Bauman MSTU, 13 (9), 127–144. doi:10.7463/0913.0606017
  35. Stepanov, V. A. (2014). Uluchshenie ekspluatatsionnyih pokazateley avtomobiley mikrodugovyim oksidirovaniem dnisch porshney dvigateley. Science and world, 1 (5), 115–117.
  36. Nurutdinov, A. Sh., Stepanov, V. A., Hohlov, A. L., Uhanov, D. A., Kanyaeva, O. M. (2013). Povyishenie tehniko-ekspluatatsionnyih pokazateley DVS modernizatsiey tsilindroporshnevoy gruppyi. Vestnik SGAU im. N. I. Vavilova, 11, 56–59.
  37. Marchenko, A. P., Shpakovskiy, V. V. (2011). Vliyanie korundovogo sloya na rabochih poverhnostyah porshney na protsess sgoraniya v DVS. Dvigateli vnutrennego sgoraniya, 2, 24–28.
  38. Marchenko, A. P., Shpakovskyi, V. V., Pylov, V. V. (2013). Pidvyshchennya ekonomichnosti benzynovoho dvyhuna na riznykh rezhymakh roboty pry zastosuvanni chastkovo-dynamichnoyi teploizolyatsiyi porshniv. Visnyk NTU «KhPI», 32 (1005), 106–110.
  39. Sakhnenko, N. D., Ved, M. V., Karakurkchi, A. V.; Fesenko, O., Yatsenko, L. (Eds.). (2017). Chapter 38. Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes: Proceedings // Nanophysics, Nanomaterials, Interface Studies, and Applications. Springer International Publishing AG, 507–531. doi:10.1007/978-3-319-56422-7_38
  40. Ved, M. V., Karakurkchi, A. V., Sakhnenko, N. D., Gorohivskiy, A. S. (2017). Synthesis of Catalytic Cobalt-Containing Coatings on Alloy Al25 Surface by Plasma Electrolytic Oxidation. Chemistry, Physics and Technology of Surface, 82 (1), 73–79. doi:10.15407/hftp08.01.073
  41. Parsadanov, I. V., Sakhnenko, N. D., Ved, M. V., Rykova, I. V., Khyzhniak, V. O., Karakurkchi, A. V., Gorohivskiy, A. S. (2017). Increasing the efficiency of intra-cylinder catalysis in diesel engines. Voprosyi himii i himicheskoy tehnologii, 52 (6), 145–151.

Published

2017-12-28

How to Cite

Karakurkchi, A., Sakhnenko, M., Ved, M., & Parsadanov, I. (2017). Research of the peculiarities of plasma-electrolytic treatment of AK12M2MgN piston alloy with formation of ceramic-like coatings. Technology Audit and Production Reserves, 1(1(39), 27–35. https://doi.org/10.15587/2312-8372.2018.124188

Issue

Section

Materials Science: Original Research