Heat transfer and hydraulic losses in the gap between rotating cylinders

Authors

  • Евгений Валентинович Мочалин Donbas State Technical University, Ukraine
  • Сергей Александрович Юрьев Donbas State Technical University, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2013.14901

Keywords:

Fluid dynamics, heat transfer, rotating permeable cylinder, hydrodynamic losses

Abstract

Despite the large number of works devoted to the study of flow between coaxial rotating cylinders, little attention was given to the issues related to the complex influence of complementary factors, such as surface roughness and surface relief, the presence of the forced flow of fluid through the annular gap, on the heat transfer and flow structure. This is due to a major complication formulation of the problem when these additional factors are considered. At the same time, these factors must be considered in order to cover the existing practical applications. In this paper we examine the effect of roughness and surface relief, the forced flow of fluid through the annular gap on heat transfer between the cylinders and flow, as well as on hydraulic losses. A comparison of exiting data about impact of various factors on heat transfer and hydraulic losses is carried out on the common methodological basis. The examination is based on the known results about the impact of forced axial flow and longitudinal grooves on the cylinders surface and includes the recent data of numerical simulation of Taylor-Couette problem with radial through-flow.

The results show that the radial flow through the surface of rotating cylinder provides a substantially larger increase in the heat transfer coefficient in comparison with other examined methods. The data obtained justify the new way of improvement of the technical devices that implement convective heat transfer near the surface of a rotating cylinder

Author Biographies

Евгений Валентинович Мочалин, Donbas State Technical University

Doctor of Technical Sciences, Professor
Department of Theoretical and structural mechanics

Сергей Александрович Юрьев, Donbas State Technical University

graduate student
Department of Theoretical and structural mechanics

References

  1. Халатов, А.А. Теплообмен и гидродинамика в полях центробежных массовых сил [Текст] / А.А. Халатов, А.А. Авраменко, И.В. Шевчук. − Киев: Ин-т техн. теплофизики НАН Украины, 2000. − Т.4: Инженерное и технологическое оборудование. – 212 с.
  2. Борисенко, А.И. Аэродинамика и теплопередача в электрических машинах [Текст] / А.И. Борисенко, В.Г. Данько, А.И. Яковлев. М.: Энергия, 1974. – 560 с.
  3. Gardiner, S.R.M. Heat transfer in an annular gap [Текст] / S.R.M. Gardiner, R.H. Sabersky // Int. J. Heat Mass Transfer. 1978. Vol. 21. рр. 1459 – 1466.
  4. Lee, Y. N. Heat transfer characteristics of the annulus of two coaxial cylinders with one cylinder rotating [Текст] / Y.N. Lee, W.J. Mincowicz // Int. J. Heat Mass Transfer. 1989. Vol. 32. рр. 711 – 722.
  5. Fenot, M. A review of heat transfer between concentric rotating cylinders with or without axial flow [Текст] / V. Fenot, Y. Bertin, E. Dorignac, G. Lalizel // Int. Journ. of Thermal Sciences. 2011. Vol. 50. рр. 1138 – 1155.
  6. Chang, S. Hydromagnetic stability of dissipative flow between rotating permeable cylinders. P.1 [Текст] / S. Chang, W.K. Sartory // J. Fluid Mech. – 1967. – Vol.27. – рр. 65 − 79.
  7. Lueptow, R.M. Stability of axial flow in an annulus with a rotating inner cylinder [Текст] / R.M. Lueptow, A. Docter, K. Min // Phys. Fluids. – 1992. – Vol. A4. – рр. 2446 2456.
  8. Мочалин, Е.В. Гидродинамика и теплообмен снаружи вращающегося цилиндра при протоке жидкости через его поверхность [Текст] / Е.В. Мочалин // Сборник научных статей Современная наука. – 2011, №2(6).
  9. Мочалин, Е.В. Теплообмен и гидродинамика в полях центробежных массовых сил [Текст] / Е.В. Мочалин, А.А. Халатов. – Киев: Ин-т техн. теплофизики НАН Украины, 2010. – Т.8: Гидродинамика закрученного потока в ротационных фильтрах. – 428 с
  10. Мочалин, Е.В. Интенсивность обмена импульсом и теплотой в потоке снаружи вращающегося проницаемого цилиндра [Текст] / Е.В. Мочалин, С.А. Юрьев // Промислова гідравліка і пневматика. – 2011, №34(4)
  11. Юр’єв, С.О. Теплообмін і тертя поблизу обертового циліндра з протоком рідини через його поверхню [Текст] / С.О. Юр’єв // Технологічний аудит та резерви виробництва. – 2012. – T. 5, № 1(7). - С. 19-20.
  12. Юр’єв, С.О. Интенсификация теплоотдачи от вращающегося цилиндра [Текст]: зб. тез доп. / С. О. Юрьев // Всеукраїнська конференція «Відкриті фізичні читання». – Алчевськ: ДонДТУ, 2012. – С. 39.
  13. Устименко, Б.П. Процессы турбулентного переноса во вращающихся течениях [Текст] / Б.П. Устименко. – Алма-Ата: Наука, 1977. – 228 с.
  14. Bjorclund, I.S. Heat transfer between concentric rotating cylinders [Текст] / I.S. Bjorclund, W.M. Kays // Trans. of the ASME, Journ. of Heat Transfer. 1959. Vol. 81. рр. 175 – 186.
  15. Tachibana, F. Heat transfer in an annulus with an inner rotating cylinder [Текст] / F. Tachibana, S. Fukui, H.
  16. Mitsumura // Bulletin of JSME. 1963. Vol. 3. рр. 119 – 123.
  17. Batten, W. M. Transition from vortex to wall driven turbulence production in the Taylor–Couette system with a rotating inner cylinder [Текст] / W. M. Batten, N. W. Bressloff, S.R. Turnock // Int. J. Numer. Meth. Fluids. 2002. Vol. 38. рр. 207 – 226.
  18. An experimental study of heat transfer at high tempereture differences in turbulent air flow between a rotating cylinder and stationary concentric outer cylinder: (Final report) [Текст] / Columbia Univercity; G.S. Longobardo, H.G. Elrod, New York, 1962. 327 p. No AFOSR 3207.
  19. Щукин, В.К. Теплообмен, массообмен и гидродинамика закрученных потоков в осесимметричных каналах [Текст] / В.К. Щукин, А.А. Халатов. – М.: Машиностроение, 1982.– 199с.
  20. Khalatov, A.A., Avramenko, A.A., Shevchuk I.V. (2000). Heat transfer and hydrodynamics in the field of centrifugal mass forces. Kiev: Institute of Technical. Thermal Physics, National Academy of Sciences of Ukraine, T.4: Engineering and manufacturing equipment. 212.
  21. Borisenko, A.I., Danko, V.G., Yakovlev, A.I. (1974). Aerodynamics and heat transfer in electric machines. Moscow: Energiya, 1974. 560.
  22. Gardiner, S.R.M., Sabersky R.H. (1978). Heat transfer in an annular gap. Int. J. Heat Mass Transfer. Vol. 21. рр. 1459-1466.
  23. Lee, Y.N., Mincowicz, W.J. (1989). Heat transfer characteristics of the annulus of two coaxial cylinders with one cylinder rotating. Int. J. Heat Mass Transfer. Vol. 32. рр. 711-722.
  24. Fenot, V., Bertin, Y., Dorignac, E., Lalizel, G. (2011). A review of heat transfer between concentric rotating cylinders with or without axial flow. Int. Journ. of Thermal Sciences. Vol. 50. рр. 1138-1155.
  25. Chang, S., Sartory, W.K. (1967). Hydromagnetic stability of dissipative flow between rotating permeable cylinders. P.1. J. Fluid Mech. Vol.27. рр. 65-79.
  26. Lueptow, R.M., Docter, A., Min, K. (1992). Stability of axial flow in an annulus with a rotating inner cylinder. Phys. Fluids. Vol. A4. рр. 2446-2456.
  27. Mochalin, E.V. (2011). Fluid dynamics and heat transfer outside the rotating cylinder with the liquid passes through the surface. Collection of scientific articles of modern science, № 2 (6).
  28. Mochalin, E.V., Khalatov, A.A. (2011). Heat transfer and hydrodynamics in the field of centrifugal mass forces. Kiev: Institute of Technical. Thermal Physics, National Academy of Sciences of Ukraine, Vol. 8: Hydrodynamics of a swirling flow in rotary filters. 428
  29. Mochalin, E.V., Yuriev, S.A. (2011). The intensity of the exchange of momentum and heat in the stream outside the rotating permeable cylinders. Industrial hydraulics and pneumatics, № 34 (4).
  30. Yuriev, S.A. (2012). Heat transfer and friction near the rotating cylinder with the duct of fluid through it surface. Technology Audit And Production Reserves, 5(1(7)), 19-20.
  31. Yuriev, S.A. (2012). Intensification of heat transfer from a rotating cylinder. National Conference "Open natural reading": Collected Abstracts. Alchevsk: Donbas State Technical University, р. 39.
  32. Ustimenko, B.P. (1977). The processes of turbulent transfer in rotating flows. Alma-Ata: Nauka. 228 p.
  33. Bjorclund, I.S., Kays, W.M. (1959). Heat transfer between concentric rotating cylinders. Trans. of the ASME, Journ. of Heat Transfer. Vol. 81. рр. 175-186.
  34. Tachibana, F., Fukui, S., Mitsumura, H. (1963). Heat transfer in an annulus with an inner rotating cylinder. Bulletin of JSME. Vol. 3. рр. 119-123.
  35. Batten, W.M., Bressloff, N.W., Turnock S.R. (2002). Transition from vortex to wall driven turbulence production in the Taylor–Couette system with a rotating inner cylinder. Int. J. Numer. Meth. Fluids. Vol. 38. рр. 207-226.
  36. Columbia Univercity; Longobardo, G.S., Elrod, H.G. (1962). An experimental study of heat transfer at high tempereture differences in turbulent air flow between a rotating cylinder and stationary concentric outer cylinder: (Final report). New York. 327 p. No AFOSR 3207.
  37. Shchukin, V.K., Khalatov, A.A. (1982). Heat transfer, mass transfer and hydrodynamics of swirling flows in axisymmetric channels. M: Mechanical Engineering. 199c.

Published

2013-06-20

How to Cite

Мочалин, Е. В., & Юрьев, С. А. (2013). Heat transfer and hydraulic losses in the gap between rotating cylinders. Technology Audit and Production Reserves, 3(1(11), 45–49. https://doi.org/10.15587/2312-8372.2013.14901