Optimization of the process of obtaining epoxidized natural rubber for the development of new composite materials on its basis

Authors

DOI:

https://doi.org/10.15587/2312-8372.2019.184364

Keywords:

natural rubber, epoxidation, combined process, reaction-separation process, scrap utilization

Abstract

The object of research is the process of epoxidation of natural rubber scrap. Epoxidized natural rubber (ENR) has a wide range of applications, for example, in treadmill coatings, special tires, belt drives, hoses, shoes, adhesives, sealants, floor coverings and other areas where only special synthetic rubbers are used. Natural rubber (NR) is modified by the epoxidation reaction to achieve higher oil resistance, increased adhesion, weather resistance and damping characteristics of materials with its use. Promising is the processing of secondary, non-standard, natural rubber (scrap) as a raw material for the ENR production. Thus, the task of scrap disposal and its return to the production cycle is solved. To accomplish the task of epoxidation of secondary rubber, the possibility of conducting combined physicochemical processes in a two-phase water-xylene medium in one reaction space was studied to reduce the total energy costs. The use of a combined reaction-separation process for the epoxidation of scrap of natural rubber allows to solve the problem of accumulation and disposal of rubber waste in the most efficient way. It is possible to obtain a product with a regulated functionalization degree without a significant amount of by-products. To find the optimal regime for conducting the combined reaction-separation process of epoxidation, the method of the planned experiment was used to obtain the regression equation with its subsequent analysis. The obtained regression equation makes it possible to optimize the conditions for conducting the process of epoxidation of nanocrystals with obtaining products with desired properties. As a result of the implementation of the planned experiment, it is found that epoxidation at a temperature of 93 °C of a diluted (10 % wt.) solution of natural rubber with peracetic acid formed "in situ" provides a higher epoxidation degree. The conditions and ratios of the components are selected under which NR retains aggregative stability during epoxidation in a water-xylene medium.

Author Biographies

Sergiy Zybaylo, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

PhD, Senior Researcher     

Department of Innovative Engineering

Viktor Ved, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

Senior Lecturer

Department of Innovative Engineering

Oxsana Okhtina, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Organic Substances and Pharmaceuticals

Vadym Kiselev, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Organic Substances and Pharmaceuticals

Denis Shapovalov, Ukrainian State University of Chemical Technology, 8, Gagarina ave., Dnipro, Ukraine, 49005

Postgraduate Student

Department of Chemical Production Equipment

References

  1. Bac, N. V., Huu, C. C. (1996). Synthesis and Application of Epoxidized Natural Rubber. Journal of Macromolecular Science, Part A, 33 (12), 1949–1955. doi: http://doi.org/10.1080/10601329608011019
  2. Lee, S. Y., Kim, J. H., Kim, B. K. (1997). Natural rubber blends with epoxidized natural rubber. Journal of Macromolecular Science, Part B, 36 (5), 579–594. doi: http://doi.org/10.1080/00222349708220443
  3. Derouet, D., Mulder-Houdayer, S., Brosse, J.-C. (2004). Chemical modification of polydienes in latex medium: Study of epoxidation and ring opening of oxiranes. Journal of Applied Polymer Science, 95 (1), 39–52. doi: http://doi.org/10.1002/app.20809
  4. Ruksakulpiwat, C., Nuasaen, S., Poonsawat, C., Khansawai, P. (2008). Synthesis and Modification of Epoxidized Natural Rubber from Natural Rubber Latex. Advanced Materials Research, 47-50, 734–737. doi: http://doi.org/10.4028/www.scientific.net/amr.47-50.734
  5. Ermolchuk, L. V., Boiko, V. P., Grischenko, V. K., Lebedev, E. V. (2008). Epoksidirovanie zhidkikh kauchukov i rezinovoi kroshki perkislotami in situ. Voprosy khimii i khimicheskoi tekhnologii, 5, 53‐58.
  6. Xu, K., He, C. Z., Wang, Y. Q., Luo, Y. Y., Liao, S. Q., Peng, Z. (2011). Preparation and Characterization of Epoxidized Natural Rubber. Advanced Materials Research, 396-398, 478–481. doi: http://doi.org/10.4028/www.scientific.net/amr.396-398.478
  7. Shapovalov, D. O., Ved, V. V., Zibailo, S. M., Iushko, V. L. (2014). Epoksiduvannia naturalnogo kauchuku v seredovischі voda – ksilol. Voprosy khimii i khimicheskoi tekhnologii, 3, 102–106.
  8. Robertsa, A. (Ed.) (1990). Naturalnii kauchuk. Moscow: Mir, 720.
  9. Baker, C. S. L., Gelling, I. R. (1987). Epoxidized Natural Rubber. Developments in Rubber Technology-4. Elsevier Applied Science Publishers Ltd, 87–117. doi: http://doi.org/10.1007/978-94-009-3435-1_3
  10. Zybaylo, S. N., Shapovalov, D. O., Ved, V. V. (2016). Instrumental and technological development of epoxidation process the waste of natural rubber (scrap). International forum for science and engineering students. Guadalajara, Jalisco: Universidad de Guadalajara, 293–301.
  11. Shapovalov, D. O., Zybailo, S. M., Ved, V. V. (2016). Issledovanie kinetiki processa epoksidirovaniia skrapa naturalnykh kauchukov. Sovremennye innovacionnye tekhnologii podgotovki inzhenernykh kadrov dlia gornoi promyshlennosti i transporta, 3, 220–225.
  12. Kiu, K. H. (2007). Study of adhesion properties of natural rubber, epoxidized natural rubber, and ethylene-propylene dieneterpolymer-based adhesives. Malaysia: Universiti Sains, 172.
  13. Akhnazarova, S. L., Kafarov, V. V. (1978). Optimizaciia eksperimenta v khimii i khimicheskoi tekhnologii. Moscow: Vysshaia shkola, 319.
  14. Shapovalov, D. O., Zubailo, S. N., Yushko, V. L., Ved, V. V. (2019). Pat. 118007 UA. Sposib otrymannia epoksydovanykh polidiieniv. MPK C08 C19/06. No. a 2014.09.104. declareted: 13.08.2014.; published: 25.10.2017, Bul. No. 17, 4.
  15. Isakova, N. L., Fikhtengolc, V. S., Krasikova, V. M. (1974). Metody issledovaniia sostava elastomerov. Leningrad: Khimiia, 104.
  16. Guben-Veil (1967). Metody organicheskoi khimii. Vol. 2. Moscow: Khimiia, 1032.
  17. Bellami, L. Dzh.; Pentin, Iu. A. (Ed.) (1963). Infrakrasnye spektry molekul. Moscow: Izd‐vo Inostrannoi literatury, 592.
  18. Tarasevich, B. N. (2012). IK spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy. Moscow: MGU imeni M. V. Lomonosova, 54.
  19. Shapovalov, D. O., Zybailo, S. M., Ptitsyn, S. H. (2016). Zakhysni pokryttia na osnovi skrapu naturalnoho kauchuku. Naukova Ukraina. Dnipropetrovsk: Aktsent PP, 342–345.
  20. Ha, N. T., Quan, N. H., Ha, C. H., Linh, N. P. D., Nghia, P. T. (2018). Characterization of Epoxidized Natural Rubber for Coating Application. Vietnam Journal of Science and Technology, 56 (3B), 169. doi: http://doi.org/10.15625/2525-2518/56/3b/12740

Published

2019-11-21

How to Cite

Zybaylo, S., Ved, V., Okhtina, O., Kiselev, V., & Shapovalov, D. (2019). Optimization of the process of obtaining epoxidized natural rubber for the development of new composite materials on its basis. Technology Audit and Production Reserves, 6(3(50), 10–13. https://doi.org/10.15587/2312-8372.2019.184364

Issue

Section

Reports on research projects