Simulation of accidents and their liquidation in ergatic systems
DOI:
https://doi.org/10.15587/2312-8372.2013.19564Keywords:
Markov chain, Kolmogorov equations, maximum entropyAbstract
A “Man-machine-environment” system with safeguard subsystem is considered. It is subjected to either classic or unstable flow of events natural or man-made disasters with various densities. The process of liquidation the accident in all these models runs in several stages with different intensities each. These phases can be repeated in the case of "multi-catastrophes". In the presented Markovian model probability of changes in health of an operator is found using the principle of maximizing the information entropy – the so called “second law of synergetics”. The average temperature of the human's body is suggested as health criterion, and its maximal probability is found. In spite of the system is open, the computational experiments show that such approach may be used. It fits the conditions of practice. The stability time of the process and the value of changing the dynamic model to stationary one are estimated. The safety criterion of situation that is the ratio of the average time between failures and mean time of recovery is introduced and investigated.
References
- Арнольд, В. И. «Жесткие» и «мягкие» математические модели [Текст] / В. И. Арнольд. - М.: МЦНМО, 2000. - 32 с.
- Вентцель, Е. С. Исследование операцій [Текст] / Е. С. Вентцель. - М.: Советское радио, 1972. - 552 с.
- Хинчин, А. Я. Работы по математической теории массового обслуживания [Текст] / А. Я. Хинчин; под ред. Б. В. Гнеденко. - М.: Физматгиз, 1963. - 236 с.
- Хакен, Г. Информация и самоорганизация [Текст] / Г. Хакен. - М.: КомКнига, 2005. - 248 с.
- Аль-Азави, Р. Дж. Об одном подходе к моделированию человеко-машинных систем восстановления в критических ситуациях [Текст] / Р. Дж. Аль-Азави // 16-й Международный молодежный форум «Радиоэлектроника и молодежь в ХХІ веке», 17–19 апреля 2012 г. – С. 131-132
- Alazawi, R. J. Markovian Approach To Man-Machine-Environment Systems [Текст] / R. J. Alazawi // Радиотехника. – 2012. – №170. – С. 14-18.
- Аль-Азави, Р. Дж. Моделирование Человеко-Машинных Систем восстановления в критических ситуациях с помощью процессов гибели и размножения [Текст] / Р. Дж. Аль-Азави // Радиотехника. - Харьков, 2013.
- Наумейко, И. В. К расчету марковской модели эргатической системы [Текст] / И. В. Наумейко, А. В. Сова // Сб. Науч. Труд. 5-Й Юбилейной Международной Научной конференции "Функциональная база наноэлектроники". - Харьков-Крым, 2012. - С. 236-239
- Jaynes, E. T. Where do we stand on maximum entropy? [Текст] / E. T. Jaynes; R. D. Levine, M. Tribus (eds.) // The Maximum Entropy Formalism. – Cambridge, Mass.: M.I.T. Press, 1978.
- Jaynes, E. T. Where do we go from here? [Текст] / E. T. Jaynes; C. Ray Smith, W. T. Grandy, Jr.(eds) // Maximum-Entropy and Bayesian Methods in Inverse Problems. - D. Reidel Publishing Company, 1985. - P. 21-58.
- Arnold, V. I. (2000). "Hard" and "soft" mathematical models. Moscow MCCME, 32.
- Wentzel, E. S. (1972). Operations research. Moscow: Soviet Radio, 552.
- Khinchin, A. I.; Gnedenko, B. V. (1963). Works on the mathematical theory of queuing systems. Moscow: Fizmatgiz, 236.
- Haken, H. (2005). Information and Self-Organization. Moscow: KomKniga, 248.
- Al Azawi, R. J. (2012). An approach to modeling human-machine systems recovery in critical situations. 16th International Youth Forum "Electronics and youth in XXI century", 17 - 19April, 2012, 131-132.
- Al Azawi, R. J. (2012). Markovian Approach To Man-Machine-Environment Systems. Radio Engineering, 170, 14-18.
- Al Azawi, R. J. (2013). Modeling human-machine system recovery in critical situations with life and death processes. Radio Engineering.
- Naumeyko, I. V., Sova, A. V. (2012). Computational Markov models for ergatic system. Sat Nauch.Trud. 5th Anniversary of the International Scientific Conference "Functional Nano electronics" Kharkiv-Crimea, 236-239.
- Jaynes, E. T.; In: Levine, R. D., Tribus, M. (1978). Where do we stand on maximum entropy? The Maximum Entropy Formalism. Cambridge, Mass.: MIT Press.
- Jaynes, E. T.; In: Ray Smith, C., Grandy, W. T. Jr. (1985). Where do we go from here? Maximum-Entropy and Bayesian Methods in Inverse Problems. D. Reidel Publishing Company, 21-58.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Рази Джабур Аль-Азави
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.