Assessment of the authenticity of a semiempirical turbulent combustion method in afterburner of a gas turbine engine
DOI:
https://doi.org/10.15587/2312-8372.2020.199964Keywords:
gas-dynamic calculations, aircraft engines, turbojet engines, afterburner and output device, work process.Abstract
The object of research is the working process of the afterburner of the combustion chamber of a turbojet dual-circuit engine with flow mixing. The research was aimed at developing a comprehensive methodology for calculating the afterburner-output device of a forced turbojet engine, taking into account the unevenness of the coefficient of oxygen excess and flow turbulence.
To calculate the process of mixture formation, let’s use the model of the separate flow of the gas and liquid phases, taking into account the influence of finite transfer rates between the phases. The gas phase is calculated using a numerical method based on the Eulerian-Lagrangian approach, which allows one to calculate a three-dimensional compressible unsteady flow in an afterburner and is described by Navier-Stokes equations with Reynolds averaging and a one-parameter model of turbulent viscosity. The differential equations of the liquid phase are solved by the Runge-Kutta method. Accounting for turbulent combustion is carried out using the semi-empirical theory.
The main indicator of the afterburner combustion chamber working process is the coefficient of completeness of combustion, on which the engine thrust during forced operation depends. To evaluate the combustion efficiency, the fields of velocity, temperature, pressure, mass fraction of oxygen, fuel vapor and pulsation velocity are calculated. These values are determined by numerical simulation of a two-phase flow. The work uses a model of the separate flow of the gas and liquid phases, taking into account the influence of finite transfer rates between the phases. Having data of numerical calculation and a semi-empirical model, let’s determine the completeness of fuel combustion, depending on the coefficient of excess air and the length of the combustion zone. The technique used in this work allows to calculate the completeness of fuel combustion in the afterburner, and the calculation results coincide with experimental data with an error of no more than 7%. Having data on the completeness of combustion, one can determine the thrust of the nozzle during forced operation of the engine.
References
- Nechaev, Iu. N. (1990). Teoriia aviatsionnykh dvigatelei. Izv. VVIA im. Zhukovskogo, 703.
- Abramovich, G. N., Girshovich, T. A., Krashennikov, S. Iu., Sekundov, A. N. et. al. (1984). Teoriia turbulentnykh strui. Moscow: Nauka, 715.
- Epifanov, S. V., Kravchenko, I. F., Loginov, V. V. (2017). Kontseptsii proektirovaniia i dovodki dvigatelei dlia uchebno-boevykh samoletov. Kharkiv: Natsionalnyi aerokosmicheskii universitet im. N.E. Zhukovskogo “KHAI”, 390.
- Kharitonov, V. F. (2001). Metody, ispolzuemye pri modelirovanii kamer sgoraniia GTD. Izvestiia vuzov. Aviatsionnaia tekhnika, 3, 23–25.
- Boiko, A. V., Govoruschenko, Iu. N., Ershov, S. V., Rusanov, A. V. et. al. (2002). Aerodinamicheskii raschet i optimalnoe proektirovanie protochnoi chasti turbomashin. Kharkiv: NTU, KHPI, 356.
- Kislov, O. V., Rublev, V. I. (2004). Metodika otsenki effektivnosti forsazhno-vykhodnykh ustroistv TRDDF. Voprosy proektirovaniia i proizvodstva konstruktsii letatelnykh apparatov. Sbornik nauchnykh trudov. NAU im. N.E. Zhukovskogo, 36 (1), 50–59.
- Loginov, V. V., Rublev, V. I. (2004). Modelirovanie techeniia v forsazhnoi kamere sgoraniia aviatsionnogo dvigatelia. Іntegrovanі tekhnologіi ta energozberezhennia, 4, 60–67.
- Oran, E. S., Boris, J. P. (2000). Numerical Simulation of Reactive Flow. Cambridge University Press, 530. doi: http://doi.org/10.1017/cbo9780511574474
- Lefevr, A. (1986). Protsessy v kamere sgoraniia GTD. Moscow: Mir, 566.
- Spalding, D. B. (1979). Combustion and Mass Transfer. Elsevier, 418.
- Gruzdev, V. N., Dakhin, V. A., Talantov, A. V. (1984). Vliianie stabilizatorov plameni i goreniia na protsessy smesheniia v priamotochnykh kamerakh sgoraniia. Protsessy goreniia v potoke. Kazan: KAI, 79.
- Talantov, A. V. (1978). Gorenie v potoke. Moscow: Mashinostroenie, 160.
- Raushenbakh, B. V. et. al. (1964). Fizicheskie osnovy rabochego protsessa v kamerakh sgoraniia vozdushno-reaktivnykh dvigatelei. Moscow: Mashinostroenie, 527.
- Pchelkin, Iu. M. (1973). Kamery sgoraniia gazoturbinnykh dvigatelei. Moscow: Mashinostroenie, 392.
- Gruzdev, V. N. (1987). Metodika rascheta integralnoi polnoty sgoraniia topliva v kamere priamotochnogo tipa. Rabochie protsessy v kamerakh sgoraniia vozdushno-reaktivnykh dvigatelei. Kazan: KAI, 18–28.
- Solntsev, V. P. (1978). Vliianie parametrov turbulentnosti na protsess sgoraniia odnorodnoi benzino-vozdushnoi smesi za stabilizatorom v usloviiakh zakrytogo potoka. Stabilizatsiia plameni i razvitie protsessov sgoraniia v turbulentnom potoke. Moscow: Nauka, 75–126.
- Musin, L. R. et. al. (1974). Vliianie zateneniia kamery sgoraniia stabilizatorami na skorost rasprostraneniia plameni v turbulentnom potoke odnofaznoi smesi. Gorenie v potoke, 167, 21–28.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Vasyl Loginov, Volodymyr Rublov, Аlexandr Yelansky
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.