Genesis of technologies and ways to improve design and construction of towed underwater systems for shallow-water areas

Authors

DOI:

https://doi.org/10.15587/2706-5448.2020.202109

Keywords:

towed underwater system, information modeling, additive manufacturing technology, marine technology.

Abstract

The object of research is the design technology of towed underwater systems for shallow waters. The subject of research is ways to increase productivity and reduce the cost of designing and manufacturing towed underwater systems.

During the research, the methodology of system approach, methods of structural analysis, mathematical modeling and 3D-design, additive technologies of manufacturing structures of towed underwater systems are applied.

A systematic analysis of the laws of development of the technologies of designing towed underwater systems is performed. The perspective directions of their further development are formulated as a necessary condition for increasing the efficiency of design works on the basis of modern designing tools and ensuring competitiveness in the market of marine equipment. It is proposed to supplement the traditional stages of designing such systems with three new stages that embody the current trends in the creation of marine technology. The genesis of the technologies of designing towed underwater systems is developed as a scientific and methodological basis for their further development in the direction of increasing the efficiency of design works and reducing the cost of time and financial resources. It is theoretically substantiated the feasibility of developing technologies of design of towed underwater systems by introducing into the project practice three technologies:

– technologies of information modeling of the basic steady and transient modes of towed underwater systems on the basis of system approach, supplemented by the criteria of cost estimation for their construction and operation;

– technologies of the building information modeling as an information support for the design, construction and further operation of the generated towed underwater system;

– additive technology of production of elements and units of the towed underwater system based on the results obtained from the previous technologies as an effective way to reduce the total costs of financial and time resources and reduce the cost of created towed underwater systems.

The practical importance of the work is to confirm the efficiency and industrial perspective of the proposed technologies, which was obtained as a result of their partial introduction into the design and production practice when creating the towed glider project.

Further research is planned to be conducted within the framework of the pilot project «Single Information Space for the Processes of Design, Construction and Operation of towed Underwater Systems», as well as by expanding the use of additive technologies during the construction of towed underwater systems.

Author Biographies

Volodymyr Blintsov, Admiral Makarov National University of Shipbuilding, 9, Heroiv Ukrainy ave., Mykolayiv, Ukraine, 54025

Doctor of Technical Sciences, Professor, Vice-Rector for Scientific Work

Pavlo Kucenko, Admiral Makarov National University of Shipbuilding, 9, Heroiv Ukrainy ave., Mykolaiv, Ukraine, 54025

Junior Researcher

References

  1. Moore, S. W., Bohm, H., Jensen, V. (2010). Underwater Robotics: Science, Design & Fabrication. Marine Advanced Technology Education (MATE) Center, 770.
  2. Ryzhkov, S. S., Blintsov, V. S., Yehorov, H. V., Zhukov, Yu. D., Kvasnytskyi, V. F., Koshkin, K. V. et. al. (2011). Stvorennia universalnykh transportnykh suden i zasobiv okeanotekhniky. Mykolaiv: Natsionalnyi universytet korablebuduvannia imeni admirala Makarova, 340.
  3. Towed Vehicles. Тhe Woods Hole Oceanographic Institution. Available at: https://www.whoi.edu/what-we-do/explore/underwater-vehicles/towed-vehicles/
  4. Zraev, R. A. (2016). Tekhnika pokoreniia morskikh glubin. Neobitaemye podvodnye apparaty vchera, segodnia i zavtra. Molodoi uchenii, 26 (130), 37–39.
  5. Iievlev, M. M., Chubenko, O. V., Blintsov, V. S., Nadtochyi, A. V. (2019). Pidvodna arkheolohiia pivnichnoho Prychornomoria: Stan ta perspektyvy rozvytku. Mykolaiv: Natsionalnyi universytet korablebuduvannia imeni admirala Makarova, 336.
  6. Jaulin, L., Caiti, A., Carreras, M., Creuze, V., Plumet, F., Zerr, В., Billon-Coat, А. (2017). Marine Robotics and Applications. Springer, 178. doi: http://doi.org/10.1007/978-3-319-70724-2
  7. Rimskii-Korsakov, N. A. (2017). Tekhnicheskie sredstva dlia issledovanii dna akvatorii gidrolokatsionnymi metodami. Mezhdunarodnii zhurnal prikladnykh i fundamentalnykh issledovanii, 10 (2), 205–213.
  8. Shcherbakov, V. (2013). Lazery ishchut miny. Obozrenie armii i flota, 3. Available at: http://otvaga2004.ru/atrina/atrina-ships/lazery-ishhut-miny/
  9. Burunina, Zh. Yu. (2003). Proektni zadachi mekhaniky pidvodnykh buksyrovanykh system z pidiomnymy aparatamy. Zbirnyk naukovykh prats UDMTU, 2 (388), 10–19.
  10. Blintsov, V., Maidaniuk, P., Sirivchuk, A. (2019). Improvement of technical supply of projects of robotized monitoring of underwater conditions in shallow water areas. EUREKA: Physics and Engineering, 3, 41–49. doi: http://doi.org/10.21303/2461-4262.2019.00893
  11. Babkin, H. V., Blintsov, V. S., Druzhynin, Ye. A., Kiiko, S. H., Knyrik, N. R., Koshkin, K. V. et. al. (2017). Upravlinnia uspishnymy proektamy stvorennia skladnoi tekhniky. Mykolaiv: Vydavnytstvo Torubary V. V., 336.
  12. Nekrasov, V. (2019). Conceptual Designins of Ships. Kyiv-Kherson: Oldi-Plus, 112.
  13. Linklater, A. (2005). Design and Simulation of a Towed Underwater Vehicle. Blacksburg, 120. Available at: https://vtechworks.lib.vt.edu/bitstream/handle/10919/33622/AmyThesis.pdf?sequence=1&isAllowed=y
  14. Abdulin, A. J., Senyushkin, N. S., Sukhanov, A. V., Yamaliev, R. R. (2010). Systems of the automated designing as the tool of the decision of the high technology problems. Vestnyk Voronezhskoho hosudarstvennoho tekhnycheskoho unyversyteta, 10. Available at: https://cyberleninka.ru/article/n/sistemy-avtomatizirovannogo-proektirovaniya-kak-instrument-resheniya-naukoemkih-konstruktorskih-zadach-sudostroeniya
  15. Gianpaolo, S., Gianmaria, C., Meneghello, R., D'Angelo, L. (2012). Computer Aided Ship Design: A new Tools Suite for Management, Tracing, Unfolding and Nesting of Shells. Conference: 2 Congresso Nazionale del Coordinamento della Meccanica Italiana. Ancona. Available at: https://www.researchgate.net/publication/232957836
  16. Sunde, C. H. (2014). 3D visualization of autonomous underwater robots. Available at: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/238901
  17. Chin, C. S. (2017). Computer-Aided Control Systems Design: Practical Applications Using MATLAB® and Simulink®. CRC Press, 384. doi: http://doi.org/10.1201/b13697
  18. Shahrieel, М., Shahrieel, M. М. A., Li, K., Aripin, K. (2019). Design analysis and modelling of autonomous underwater vehicle (AUV) using CAD. Indian Journal of Geo-Marine Sciences, 48 (7), 1081–1090.
  19. Rychenkova, A. Y., Klimenko, E. S., Borodina, L. N. (2020). Geometric modeling and quality assessment of the hull frame surface in COMPASS-3D CAD. Russian Journal of Water Transport, 62, 81–90. doi: http://doi.org/10.37890/jwt.vi62.49
  20. Klimenko, E. S., Borodina, L. N., Rychenkova, A. IU. (2018). Prikladnoe ispolzovanie sistem avtomatizirovannogo proektirovaniia pri modelirovanii mekhanizmov i mashin na morskom transporte. Vestnik VGAVT, 57, 38–44.
  21. САЕ – Computer-aided engineering. Available at: https://roi4cio.com/categories/category/cae-sistema-inzhenernogo-analiza/
  22. Minchenko, L. V., Kandratova, T. A. (2017). Sistemy avtomaticheskogo proektirovaniia v sudostroenii. Sovremennye tendentsii tekhnicheskikh nauk. Kazan: Buk, 73–76.Available at: https://moluch.ru/conf/tech/archive/230/12335/
  23. Blintsov, V. S., Burunina, Zh. Yu., Lonh, N. T. (2005). Prohramno-tekhnichnyi kompleks dlia morskykh doslidnytskykh vyprobuvan odnolankovykh pidvodnykh buksyrovanykh system. Zbirnyk naukovykh prats NUK, 3, 30–38.
  24. Blintsov, A. V., Burunina, Zh. Iu., Klimenko, P. G., Chan, T. D. (2012). Spetsializirovannii modeliruiushchii kompleks dlia issledovaniia effektivnosti sistemy upravleniia podvodnoi buksiruemoi sistemoi. Zbіrnik naukovikh prats NUK, 1, 92–97.
  25. Wilcox, D. C. (2006). Turbulence Modeling for CFD. D C W Industries, 522.
  26. Kensek, K. М. (2014). Building Information Modeling. Pocket Architecture: Technical Designes Series. Routledge, 285. doi: http://doi.org/10.4324/9781315797076
  27. Kumar, L. J., Pandey, Р. М., Wimpenny, D. І. (Eds.) (2019). 3D Printing and Additive Manufacturing Technologies. Springer, 311. doi: http://doi.org/10.1007/978-981-13-0305-0
  28. Vanin, V. V., Perevertun, V. V., Nadkernychna, T. O. (2005). Kompiuterna inzhenerna hrafika v seredovyshchi AutoCAD. Kyiv: Karavela, 336.
  29. Hurko, O. H., Yeromenko, I. F. (2011). Analiz ta syntez system avtomatychnoho keruvannia v MATLAB. Kharkiv: KhNADU, 286.
  30. Blintsov, O., Sokolov, V., Kucenko, P. (2019). Formulation of design tasks of towed underwater vehicles creation for shallow water and automation of their motion control. EUREKA: Physics and Engineering, 2, 30–42. doi: http://doi.org/10.21303/2461-4262.2019.00854
  31. Stankov, B. N., Pecheniuk, A. V. (2015). Tsifrovye tekhnologii v proektirovanii sudov: ispolzovanie kompleksa FlowVision. SAPR i grafika, 3, 78–82. Available at: http://www.digitalmarine.net/builder/SAPR.pdf
  32. Pantov, E. N., Makhin, N. N., Sheremetov, B. B. (1973). Osnovy teorii dvizheniia podvodnykh apparatov. Leningrad: Sudostroenie, 216.
  33. Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Norway: John Wiley & Sons Ltd., 596. doi: http://doi.org/10.1002/9781119994138
  34. Blintsov, O. (2017). Devising a method for maintaining manageability at multidimensional automated control of tethered underwater vehicle. Eastern-European Journal of Enterprise Technologies, 1 (9 (85)), 4–16. doi: http://doi.org/10.15587/1729-4061.2017.93291
  35. Blintsov, V., Blintsov, O., Sokolov, V. (2019). Synthesis of towed underwater vehicle spatial motion automatic control system under uncertainty conditions. Technology Audit and Production Reserves, 1 (2 (45)), 44–51. doi: http://doi.org/10.15587/2312-8372.2019.158903
  36. Dudykevych, V., Oleksandr, B. (2016). Tasks statement for modern automatic control theory of underwater complexes with flexible tethers. EUREKA: Physics and Engineering, 5, 25–36. doi:10.21303/2461-4262.2016.00158
  37. Larsson, L., Visonneau, F., Stern, M. (2011). CFD in ship hydrodynamics – results of the Gothenburg 2010 workshop. Proc. of the IV International Conference on Computational Methods in Marine Engineering, 237–259. doi: http://doi.org/10.1007/978-94-007-6143-8_14
  38. Blintsov, V., Kucenko, P. (2019). Application of systems approach at early stages of designinng unmanned towed underwater systems for shallow water areas. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 15–24. doi: http://doi.org/10.15587/1729-4061.2019.179486

Published

2020-03-05

How to Cite

Blintsov, V., & Kucenko, P. (2020). Genesis of technologies and ways to improve design and construction of towed underwater systems for shallow-water areas. Technology Audit and Production Reserves, 2(2(52), 19–27. https://doi.org/10.15587/2706-5448.2020.202109

Issue

Section

Systems and Control Processes: Original Research