Approval of the technology of carbon dioxide injection into the V-16 water driven reservoir of the Hadiach field (Ukraine) under the conditions of the water pressure mode pages 1–2

Authors

  • Serhii Krivulya Branch of JSC Ukrgasvydobuvannya Ukrainian Scientific-Research Institute of Natural Gas, 20, Himnaziyna embankment, Kharkiv, Ukraine, 61010, Ukraine https://orcid.org/0000-0003-2005-1828
  • Serhii Matkivskyi Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine, 76019 Ukrainian Scientific-Research Institute of Natural Gas, 20, Himnaziyna embankment, Kharkiv, Ukraine, 61010, Ukraine https://orcid.org/0000-0002-4139-1381
  • Oleksandr Kondrat Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine, 76019, Ukraine https://orcid.org/0000-0003-4406-3890
  • Efim Bikman Ukrainian Scientific-Research Institute of Natural Gas, 20, Himnaziyna embankment, Kharkiv, Ukraine, 61010, Ukraine https://orcid.org/0000-0001-9781-7954

DOI:

https://doi.org/10.15587/2706-5448.2020.217780

Keywords:

3D model of the field, gas condensate reservoir, water drive, residual gas, carbon dioxide injection.

Abstract

The object of research is water-driven gas-condensate reservoirs. Using the main hydrodynamic modeling tools Eclipse and Petrel from Schlumberger (USA), the study was carried out to improve the existing technologies for the displacement of residual gas reserves by carbon dioxide from the water-driven gas-condensate reservoirs. The carbon dioxide injection technology was tested in the V-16 reservoir of the Hadiach oil and gas condensate field (Ukraine). According to the study results, it was found that due to the injection of non-hydrocarbon gas, the cumulative water production are reduced compared to the depletion. Based on the obtained modeling results, the calculation of the predicted hydrocarbon recovery factors at the moment of carbon dioxide breakthrough into the production well was carried out according to the cumulative formation water production. According to the calculations, it was found that the implementation of the enhanced gas recovery technology provides significantly higher ultimate hydrocarbon recovery compared to the depletion. The predicted gas recovery factor when injecting carbon dioxide into the V-16 reservoir increases by 2.95 % of the residual gas reserves, and the condensate recovery factor for these conditions by 1.24 %. Based on the study results, the technological efficiency of using carbon dioxide as an injection agent to increase the hydrocarbon recovery from water-driven reservoirs was established. According to the simulation results, the implementation of the technology of carbon dioxide injection into the V-16 reservoir of the Hadiach oil and gas condensate field can significantly increase the hydrocarbon recovery from the deposit, thereby increasing the production capacity of the field.

Author Biographies

Serhii Krivulya, Branch of JSC Ukrgasvydobuvannya Ukrainian Scientific-Research Institute of Natural Gas, 20, Himnaziyna embankment, Kharkiv, Ukraine, 61010

PhD, Director of Branch

Serhii Matkivskyi, Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine, 76019 Ukrainian Scientific-Research Institute of Natural Gas, 20, Himnaziyna embankment, Kharkiv, Ukraine, 61010

Postgraduate Student

Department of Petroleum Production

Head of Department

Hydrocarbon Fields Development Planning Department

Oleksandr Kondrat, Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska str., Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor, Head of Department

Department of Petroleum Production

Efim Bikman, Ukrainian Scientific-Research Institute of Natural Gas, 20, Himnaziyna embankment, Kharkiv, Ukraine, 61010

Deputy Director for Oil and Gas Development

References

  1. Kondrat, R. M. (1992). Gazokondensatootdacha plastov. Moscow: Nedra, 255.
  2. Matkivskyi, S. V., Kovalchuk, S. O., Burachok, O. V., Kondrat, O. R., Khaidarova, L. I. (2020). Doslidzhennia vplyvu neznachnoho proiavu vodonapirnoi systemy na dostovirnist materialnoho balansu kolektoriv. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 2 (75), 43–51.
  3. Rassokhin, G. V. (1997). Zavershaiuschaia stadiia razrabotki gazovykh i gazokondensatnykh mestorozhdenii. Moscow: Nedra, 184.
  4. Boiko, V. S., Boiko, R. V., Keba, L. M., Seminskyi, O. V. (2006). Obvodnennia hazovykh i naftovykh sverdlovyn. Kyiv: Mizhnarodna ekonomichna fundatsiia, 791.
  5. Geffen, T. M., Parrish, D. R., Haynes, G. W., Morse, R. A. (1952). Efficiency of Gas Displacement From Porous Media by Liquid Flooding. Journal of Petroleum Technology, 4 (2), 29–38. doi: http://doi.org/10.2118/952029-g
  6. Knapp, R. M., Henderson, J. H., Dempsey, J. R., Coats, K. H. (1968). Calculation of Gas Recovery Upon Ultimate Depletion of Aquifer Storage. Journal of Petroleum Technology, 20 (10), 1129–1132. doi: http://doi.org/10.2118/1815-pa
  7. Rassokhin, G. V., Leontev, I. A., Petrenko, V. I. et. al. (1973). Vliianie obvodneniia mnogoplastovykh gazovykh i gazokondensatnykh mestorozhdenii na ikh razrabotku. Moscow: Nedra, 264.
  8. Rczaee, M., Rostami, B., Mojarad, M. (2013). Experimental Determination of Optimized Production Rate and its Upscaling Analysis in Strong Water Drive Gas Reservoirs. International Petroleum Technology Conference held in Beijing, 1–11. doi: http://doi.org/10.2523/IPTC-16938-Abstract
  9. Anikeev, D. P., Zakirov, S. N., Kondrat, A. R. (2013). Vozmozhnosti uvelicheniia KIG pri razrabotke zalezhei gaza s podoshvennoi vodoi. Gazovaia promyshlennost, 9 (695), 51–53.
  10. Zakirov, S. N., Indrupskii, I. M., Zakirov, E. S. et. al. (2004). Novye printsipy i tekhnologii razrabotki mestorozhdenii nefti i gaza. Ch. 2. Moscow-Izhevsk: Institut kompiuternykh tekhnologii, 484.
  11. Zakirov, S. N., Zakirov, I. S., Batanova, M. N. et. al. (2004). Novye printsipy i tekhnologii razrabotki mestorozhdenii nefti i gaza. Ch. 1. Moscow-Izhevsk: Institut kompiuternykh tekhnologii, 520.
  12. Sim, S. S. K., Turta, A. T., Singhal, A. K., Hawkins, B. F. (2009). Enhanced Gas Recovery: Effect of Reservoir Heterogeneity on Gas-Gas Displacement. Canadian International Petroleum Conference. Calgary. doi: http://doi.org/10.2118/2009-023
  13. Sim, S. S. K., Brunelle, P., Turta, A. T., Singhal, A. K. (2008). Enhanced Gas Recovery and CO2 Sequestration by Injection of Exhaust Gases From Combustion of Bitumen. SPE Symposium on Improved Oil Recovery. Tulsa. doi: http://doi.org/10.2118/113468-MS
  14. Jikich, S. A., Smith, D. H., Sams, W. N., Bromhal, G. S. (2003). Enhanced Gas Recovery (EGR) with Carbon Dioxide Sequestration: A Simulation Study of Effects of Injection Strategy and Operational Parameters. SPE Eastern Regional Meeting. Pittsburgh. doi: https://doi.org/10.2118/84813-ms
  15. Kondrat, O., Matkivskyi, S. (2020). Research of the influence of the grid density of injection wells on the gas extraction coefficient when injecting carbon dioxide into reservoir. Technology Audit and Production Reserves, 5 (1 (55)), 12–17. doi: http://doi.org/10.15587/2706-5448.2020.215074
  16. Matkіvskii, S. V., Kondrat, O. R. (2020). Vpliv trivalostі perіodu nagnіtannia dіoksidu vugletsiu na gazoviluchennia v umovakh proiavu vodonapіrnogo rezhimu. Study of modern problems of civilization. Oslo, 135–139.
  17. Ogolo, N. A., Isebor, J. O., Onyekonwu, M. O. (2014). Feasibility Study of Improved Gas Recovery by Water Influx Control in Water Drive Gas Reservoirs. SPE Nigeria Annual International Conference and Exhibition. Lagos. doi: http://doi.org/10.2118/172364-ms
  18. Aziz, K., Settari, A. (1979). Petroleum Reservoir Simulation. London: Applied Science Publishers, 135–139.
  19. Crichlow, H. B. (1977). Modern Reservoir Engineering – A Simulation Approach. New Jersey: Prentice-Hall Inc., Englewood Cliffs, 354.
  20. Matkіvskii, S. V., Kondrat, O. R. (2020). Vpliv trivalostі perіodu nagnіtannia azotu v produktivnі pokladi na kharakter prosuvannia plastovoi vodi. About the problems of science and practice, tasks and ways to solve them. Mіlan, 137–140.
  21. Ancell, K. L., Manhart, T. A. (1987). Secondary Gas Recovery from a Water-Drive Gas Reservoir: A Case Study. SPE Annual Technical Conference and Exhibition. Dallas. doi: http://doi.org/10.2118/16944-MS
  22. Cruz Lopez, J. A. (2000). Gas Injection As A Method For Improved Recovery In Gas-Condensate Reservoirs With Active Support. SPE International Petroleum Conference and Exhibition in Mexico. Villahermosa. doi: http://doi.org/10.2118/58981-MS
  23. Khan, C., Amin, R., Madden, G. (2012). Economic Modelling of CO2 Injection for Enhanced Gas Recovery and Storage: A Reservoir Simulation Study of Operational Parameters. Energy and Environment Research, 2 (2). doi: http://doi.org/10.5539/eer.v2n2p65
  24. Tiwari, S., Suresh Kumar, M. (2001). Nitrogen Injection for Simultaneous Exploitation of Gas Cap. SPE Middle East Oil Show. Manama. doi: http://doi.org/10.2118/68169-MS
  25. Burachok, O. V., Pershyn, D. V., Matkivskyi, S. V., Bikman, Ye. S., Kondrat, O. R. (2020). Osoblyvosti vidtvorennia rivniannia stanu hazokondensatnykh sumishei za umovy obmezhenoi vkhidnoi informatsii. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch, 1 (74), 82–88.

Published

2020-12-30

How to Cite

Krivulya, S., Matkivskyi, S., Kondrat, O., & Bikman, E. (2020). Approval of the technology of carbon dioxide injection into the V-16 water driven reservoir of the Hadiach field (Ukraine) under the conditions of the water pressure mode pages 1–2. Technology Audit and Production Reserves, 6(1(56), 13–18. https://doi.org/10.15587/2706-5448.2020.217780

Issue

Section

Technology and System of Power Supply: Original Research