Modification efficiency evaluation of ceramic membranes

Authors

  • Тетяна Юріївна Дюльнева Institute of Colloid and Water Chemistry named after A. Dumansky NAS Ukraine Bull. Academician Vernadsky 42, Kyiv -142, 03680, Ukraine https://orcid.org/0000-0002-2940-3781
  • Людмила Вікторівна Сіренко National Technical Institute of Ukraine "Kyiv Polytechnic Institute" Avenue, 37, Kyiv-56, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-8913-4931
  • Катерина Миколаївна Чіркова National Technical Institute of Ukraine "Kyiv Polytechnic Institute" Avenue, 37, Kyiv-56, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5461-5049

DOI:

https://doi.org/10.15587/2312-8372.2014.25357

Keywords:

ceramic membrane, selectivity, retention factor, specific productivity, modification, baromembrane installation

Abstract

The main regularities of water purification from Ca2 + by microfiltration ceramic membranes, in particular the influence of working pressure, duration of experiments, concentration of Ca2 + ions in the initial solution on reducing the content of these ions in the filtrate were investigated. As a result of experiments, ceramic membrane isolating characteristics: Ca2+ ion retention factor R (%) and specific productivity Jv (m3/(m2/h) of the membrane were calculated. Processes of water purification from Ca2 + ions were carried out at a pressure of 0.7 MPa. It was found that calcium ion retention factor has increased from 60 to 65.5% with increasing the number of modifications from one to four. Herewith, membrane specific productivity at the end of each modification has not almost changed. Reducing the membrane specific productivity is associated with decreasing the solution density, which is the result of lowering the СаСІ2 solution temperature and raising the thickness of the dynamic membrane, formed during modification.

Theoretical and numerical processing of selectivity values, which were obtained in the course of modification, was performed. For processing the experimental results, taking into account the probability of their obtaining and experimental error, statistical methods were applied. It was concluded that the studies prove the highest efficiency of the fourth modification of the membrane since it is not covered by the determined interval. Further membrane modification is not expedient because the productivity will decrease, which will limit its use on an industrial scale.

Author Biographies

Тетяна Юріївна Дюльнева, Institute of Colloid and Water Chemistry named after A. Dumansky NAS Ukraine Bull. Academician Vernadsky 42, Kyiv -142, 03680

Researcher, Ph.D. in Chemistry

Department of catalytic water treatment

Людмила Вікторівна Сіренко, National Technical Institute of Ukraine "Kyiv Polytechnic Institute" Avenue, 37, Kyiv-56, Ukraine, 03056

Ph.D., Department of Ecology and Technology of Plant Polymers

Катерина Миколаївна Чіркова, National Technical Institute of Ukraine "Kyiv Polytechnic Institute" Avenue, 37, Kyiv-56, Ukraine, 03056

Department of Ecology and Technology of Plant Polymers

References

  1. Дытнерский, Ю. И. Баромембранные процессы. Теория и расчет [Текст]/ Ю. И Дытнерский. – М.: Химия, 1986. – 272 с.
  2. Свитцов, А. А. Введение в мембранные технологии [Текст]/ А. А. Свитцов. – М.: ДеЛипринт, 2006. – 208 c.
  3. Kesting, R. Synthetic polymeric membranes: a structural perspective [Text]/ R. Kesting. – Wiley, 1985. – 348 p.
  4. Ferry, J. Ultrafilter Membranes and Ultrafiltration [Text]/ J. Ferry// Chem. Rev. – 1936. – T. 18, №3. – P. 373-455.
  5. Tuwiner, S. Diffusion and membrane technology [Text]/ S. Tuwiner. – New York: Reinhold, 1962. – 421 p.
  6. Mulder, M. Basic Principles of Membrane Technology [Text]/ M. Mulder. –Second Edition. – Springer, 1996. – 564 p.
  7. Дульнева, Т. Ю. Очистка воды от красителей керамическими мембранами, модифицированными глинистыми минералами [Текст]/ Т. Ю. Дульнева, Д. Д. Кучерук// Химия и технология воды. – 2005. – T. 27, №5. – C. 496-504.
  8. Luyten, J. Thesis 6 th International Conference on inorganic membranes [Text]/ J. Luyten. – Montpellier, France, 2000. – P. 2.
  9. Van Gestel, T. Thesis 6 th International Conference on inorganic membranes[Text]/ T. Van Gestel, C. Vandecasteele, J. Schaep. – Montpellier, France, 2000. – P. 107.
  10. Сіренко, Л. В. Екологія та охорона навколишнього середовища [Текст]: методичні вказівки до виконання курсової роботи з дисципліни «Методи математичної статистики в екології» для студентів спеціальностей 7.04010601; 8.04010601/ Л. В. Сіренко. – К.: ФОП Бубон О. І., 2012. – 20 с.
  11. Dytnerskij, Ju. I. (1986). Baromembrannye processy. Teorija i raschet. M.: Himija, 272.
  12. Svitcov, A. A. (2006). Vvedenie v membrannye tehnologii. M.: DeLi print, 208.
  13. Kesting, R. (1985). Synthetic polymeric membranes: a structural perspective. Wiley, 348.
  14. Ferry, J. (1936). Ultrafilter Membranes and Ultrafiltration. Chem. Rev., 18, 373-455.
  15. Tuwiner, S. (1962). Diffusion and membrane technology. New York: Reinhold, 421.
  16. Mulder, M. (1996). Basic Principles of Membrane Technology. Ed. 2. Springer, 564.
  17. Dul'neva, T. Ju. (2005). Ochistka vody ot krasitelej keramicheskimi membranami, modificirovannymi glinistymi mineralami. Himija i tehnologija vody, 27, 496-504.
  18. Luyten, J. (2000). Thesis 6 th International Conference on inorganic membranes. Montpellier, France, 2.
  19. Van Gestel, T., Vandecasteele, C., Schaep, J. (2000). Thesis 6 th International Conference on inorganic membranes. Montpellier, France, 107.
  20. Sіrenko, L. V. (2012). Ekologіja ta ohorona navkolishn'ogo seredovishha. K.: FOP Bubon O. І., 20.

Published

2014-06-25

How to Cite

Дюльнева, Т. Ю., Сіренко, Л. В., & Чіркова, К. М. (2014). Modification efficiency evaluation of ceramic membranes. Technology Audit and Production Reserves, 3(5(17), 23–26. https://doi.org/10.15587/2312-8372.2014.25357

Issue

Section

Processes and equipment of food and chemical industries