Technical audit of melt granulation knots in the production of mineral fertilizers using tower method

Authors

DOI:

https://doi.org/10.15587/2312-8372.2014.26209

Keywords:

monodispersity, nitrogen fertilizers, oscillating granulator, special-frequency generator, prilling

Abstract

The paper describes the results of the research, conducted on the experimental setup on studying the effect of frequency and amplitude of the forced signal, superimposed on the liquid jet, outflowing through the hole of the perforated granulator shell, and liquid level in the volume of the device, on the homogeneity of the resulting droplets.

The study of this process is caused by the need to modernize the prilling (granulation) knots of mineral nitrogen fertilizers during their manufacture in towers in order to reduce production losses due to polydisperse fractional composition of the resulting granules.

Experimental results show that the impact of various values of the impulse on the liquid jet leads to change of its disintegration mode and diameter of the obtained droplets. This points to the need to take into account the specified frequency action when using in calculations. Otherwise, polydisperse droplets are obtained.

A combination of experimental results and theoretical studies was the basis for designing special-frequency generator, used in modernizing existing granulators in large scale production of mineral nitrogen fertilizers. The special-frequency generator allows to automatically detect and change the signal frequency when changing the level of the filled basket; improve the homogeneity of the resulting product by automatic determination of the acceptable frequency for obtaining monodisperse mode of the jet disintegration.

The studies have allowed to develop equipment that made it possible to increase the monodispersity of the resulting product (more than 98% of the desired fraction), reduce the dust content from 0.8-1.2% to 0.05-0.2%, which has led to a decrease in losses during transportation and storage. In addition, dust emissions into the atmosphere have reduced from 200-250 mg/m3 to 25-40 mg/m3, and as a result, this has allowed to decrease specific energy consumption during production and improve the environmental situation in the production area.

Author Biographies

Всеволод Иванович Склабинский, Sumy State University, Rimskogo-Korsakov 2, Sumy, Ukraine, 40007

Doctor of Technical Sciences, Professor, Head of Department

Department of processes and equipment of chemical and refining industries

Максим Сергеевич Скиданенко, Sumy State University, Rimskogo-Korsakov 2, Sumy, Ukraine, 40007

Assistant

Department of processes and equipment of chemical and refining industries

Николай Петрович Кононенко, Sumy State University, Rimskogo-Korsakov 2, Sumy, Ukraine, 40007

Senior Researcher

Research laboratory granulating and mass transfer equipment

References

  1. Orme, M. On the genesis of droplet stream microspeed dispersions [Text]/ M. Orme// Physics of Fluids A: Fluid Dynamics. – 1991. – Vol 3, № 12. – P. 2936-2947. doi:10.1063/1.857836
  2. Аметистов, Е. В. Монодисперсные системы и технологии [Текст]/ Е. В. Аметистов, А. С. Дмитриев. – М.: МЭИ, 2002. – 392 с. ISBN 5-7046-0875-2.
  3. Дмитриев, А. С. Монодисперсные системы и технологии: физико-технические основы генерации и распространения монодисперсных потоков [Текст]: автореф. дис. ... д-ра техн. наук: 01.04.14/ А. С. Дмитриев. – М., 2000. – 35 с.
  4. Чернишев, А. К. Аммиачная селитра: свойства производство применение [Текст]/ Б. В. Левин, А. В. Туголуков и др.; под ред. А. К. Чернишева, А. В. Туголукова. – М., 2009. –544 с.
  5. Холин, Б. Г. Центробежные и вибрационные грануляторы плавов и распылители жидкости [Текст]/ Б. Г. Холин. – М.: Машиностоение, 1977. – 182 с.
  6. Кочетков, В. Н. Гранулирование минеральных удобрений [Текст]/ В. Н. Кочетков. – М.: Химия, 1975. – 312 с.
  7. Vassallo, P. Satellite Formation and Merging in Liquid Jet Breakup [Text]/ P. Vassallo, N. Ashgriz// Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. The Royal Society. – 1991. – Vol. 433, № 1888. – P. 269–286. doi:10.1098/rspa.1991.0047.
  8. Eggers, J. Physics of liquid jets [Text]/ J. Eggers, E. Villermaux// Rep. Prog. Phys. – 2008. – Vol. 71, № 3. – P. 036601. doi:10.1088/0034-4885/71/3/036601. doi:10.1103/revmodphys.69.865.
  9. Eggers, J. Nonlinear dynamics and breakup of free-surface flows [Text]/ J. Eggers// Reviews of Modern Physics. – 1997. – Vol. 69, № 3. – P. 865–930. doi:10.1103/revmodphys.69.865.
  10. Gezerman, A. O. New approach for obtaining uniform- sized granules by prilling process [Text]/ A. O. Gezerman, B. D. Corbacioglu// Chemical Engineering. Elixir Chem. Engg. – 2011. – Vol. 40. – P. 5225-5228. – Available at: www/URL: http://www.google.com.ua/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.elixirpublishers.com%2Farticles%2F1350119747_40%2520(2011)%25205225-5228.pdf&ei=25PCU4ySD4W6ygOW9oKIDg&usg=AFQjCNFtz33jXehz61_QyIStm8qtX-s7hQ&bvm=bv.70810081,d.bGQ. – 20.05.2014.
  11. Скиданенко, М. С. Розповсюдження коливань тиску у зоні формування крапель віброгранулятор [Текст]: тезисы докладов Международной научно-практической Интернет-конференции, 18-19 июня 2013 г./ М. С. Скиданенко, В. І. Склабінський// Перспективные инновации в науке, образовании, производстве и транспорте. – С. 28-36.
  12. Orme, M. (1991). On the genesis of droplet stream microspeed dispersions. Physics of Fluids A: Fluid Dynamics, Vol 3, № 12, 2936-2947. doi:10.1063/1.857836
  13. Ametistov, Y. V. (2002). Monodispersnyye sistemy i tekhnologii. Moscow: MEI, 392.
  14. Dmitriyev, A. S. (2000). Monodispersnyye sistemy i tekhnologii: fiziko-tekhnicheskiye osnovy generatsii i rasprostraneniya monodispersnykh potokov. Moskovskiy energeticheskiy institut, 35.
  15. Chernishev, A., Levin, B., Tugolukov, A. (2009). Ammiachnaya selitra: svoystva proizvodstvo primeneniye. Moskva, 544.
  16. Kholin, B. G. (1977). Tsentrobezhnyye i vibratsionnyye granulyatory plavov i raspyliteli zhidkosti. Moscow: Mechanical engineering, 182.
  17. Kochetkov, V. N. (1975). Granulirovaniye mineral'nykh udobreniy. Moscow: Khimiya, 312.
  18. Vassallo, P., Ashgriz, N. (1991, May 8). Satellite Formation and Merging in Liquid Jet Breakup. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. The Royal Society, Vol. 433, № 1888, 269–286. doi:10.1098/rspa.1991.0047.
  19. Eggers, J., Villermaux, E. (2008, March 1). Physics of liquid jets. Rep. Prog. Phys., Vol. 71, № 3, 036601. doi:10.1088/0034-4885/71/3/036601.
  20. Eggers, J. (1997, July). Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics, Vol. 69, № 3, 865–930. doi:10.1103/revmodphys.69.865.
  21. Gezerman, A. O., Corbacioglu, B. D. (2011). New approach for obtaining uniform- sized granules by prilling process. Chemical Engineering. Elixir Chem. Engg., 40, 5225-5228. Available: http://www.google.com.ua/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.elixirpublishers.com%2Farticles%2F1350119747_40%2520(2011)%25205225-5228.pdf&ei=25PCU4ySD4W6ygOW9oKIDg&usg=AFQjCNFtz33jXehz61_QyIStm8qtX-s7hQ&bvm=bv.70810081,d.bGQ. Last accessed 20.05.2014.
  22. Skydanenko, M. S., Sklabinskyi, V. I. (2013). Rozpovsyudzhennya kolyvan tysku u zoni formuvannya krapelʹ vibrohranulyator. In Perspektyvnye ynnovatsyy v nauke, obrazovanyy, proyzvodstve y transporte: Mezhdunarodnaya nauchno-praktycheskaya Ynternet-konferentsyya, 28-36.

Published

2014-05-29

How to Cite

Склабинский, В. И., Скиданенко, М. С., & Кононенко, Н. П. (2014). Technical audit of melt granulation knots in the production of mineral fertilizers using tower method. Technology Audit and Production Reserves, 3(2(17), 16–23. https://doi.org/10.15587/2312-8372.2014.26209

Issue

Section

Mechanical engineering