Research of the quantitative content of liquefied gas by using model liquid systems

Authors

DOI:

https://doi.org/10.15587/2312-8372.2014.26273

Keywords:

propane, butane, liquefied petroleum gas, quantitative content, model liquid systems

Abstract

This paper presents the experimental research method for the choice of a liquid system model, which has a similar to liquefied petroleum gas structure, and also the determination of its temperature dependence. That makes it possible to verify the proposed thermometric method adequacy for quantitative content determining of the liquefied petroleum gas. This method allows to determine the quantitative content of not only the main mixture components (propane and butane) with different temperatures, but the content of impurities such as ethylene, propylene, butylene, amylene, heksylen, heptylen etc., which can improve the quantitative content accuracy of condensed petroleum gas components. Among the studied substances, such as toluene, isooctane, hexane, authors have found a compound that can be the optimal liquid system model and can be used as a reference based on which the density of liquefied petroleum gas and its quantitative value will be determined.

Author Biographies

Йосип Йосипович Білинський, Vinnytsia National Technical University, 21021, c. Vinnytsya, Khmelnytsky Shose 95

Doctor of Technical Sciences, professor, Head of Departmentof Electronics

Богдан Петрович Книш, Vinnytsia National Technical University, 21021, c. Vinnytsya, Khmelnytsky Shose 95

Assistant, PhD student

Department of Electronics

Марина Йосипівна Юкиш, Vinnytsia National Technical University, 21021, c. Vinnytsya, Khmelnytsky Shose 95

Assistant

Department of Electronics

References

  1. Rachevskyy, B. S. (2009). Szhyzhennye uhlevodorodnye hazy. M.: Neft y haz, 640.
  2. Sovlukov, A. S., Tereshin, V. I. (2004, August). Measurement of Liquefied Petroleum Gas Quantity in a Tank by Radio-Frequency Techniques. IEEE Transactions on Instrumentation and Measurement, Vol. 53, № 4, 1255-1261. doi:10.1109/tim.2004.831173.
  3. Nyfors, E., Vainikainen, P. (1989). Industrial microwave sensors. Artech House, 351.
  4. Sovlukov, A. S., Tereshin, V. I. (2012). Radyochastotnyi metod yzmerenye massy szhyzhennoho uhlevodorodnoho haza. Available: http://uteoss2012.ipu.ru/procdngs/0654.pdf. Last accessed 03.07.2014.
  5. Knysh, B. P., Bilynskyi, Y. Y. (2014). Vyznachennia kilkisnoho vmistu komponentiv skraplenoho naftovoho hazu. Visnyk Vinnytskoho politekhnichnoho instytutu, №1, 112-119.
  6. Zoughi, R. (2000). Microwave non-destructive testing and evaluation. Kluwer academic Publ, 263. doi:10.1007/978-94-015-1303-6.
  7. Sovlukov, A. S., Tereshin, V. I. Svoistva szhyzhennykh uhlevodorodnykh hazov. Osobennosty ekspluatatsyy uhlevodorodnykh system. Available: http://www.avtozagruzka.com/publ3.pdf. Last accessed 03.07.2014.
  8. Sovlukov, A. S., Tereshin, V. I. (2003). Determination of liquefied petroleum gas quantity in a reservoir by radlofrequency techniques. Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412), Vail, CO, USA, Vol. 1, 368-373. doi:10.1109/imtc.2003.1208182.
  9. Sovlukov, A. S., Tereshin, V. I. (2008, July). Radiofrequency temperature-independent measurements of the density of liquefied hydrocarbon gases. Measurement Techniques, Vol. 51, № 7, 791–793. doi:10.1007/s11018-008-9116-z.
  10. Sovlukov, A. S., Tereshin, V. I. (2008). Problemy y opyt razrabotky metodyk vypolnenyia yzmerenyi dlia orhanyzatsyy kommercheskoho ucheta SUH. Available: http://www.avk-peterburg.ru/equipments/useful/art-2008-5. Last accessed 03.07.2014.

Published

2014-07-24

How to Cite

Білинський, Й. Й., Книш, Б. П., & Юкиш, М. Й. (2014). Research of the quantitative content of liquefied gas by using model liquid systems. Technology Audit and Production Reserves, 4(1(18), 23–26. https://doi.org/10.15587/2312-8372.2014.26273

Issue

Section

Technology audit