Modernization of gas discharge visualization for application in medical diagnostics

Authors

DOI:

https://doi.org/10.15587/2706-5448.2022.263397

Keywords:

biological object, gas discharge, visualization, electric discharge circuit model, structural diagram, gas-discharge sensor

Abstract

The object of research is the processes of the emergence and glow of a discharge around biological structures in a pulsed electric field. Such processes have found use in the method of gas discharge visualization. In medical diagnostics, the general state of human health is assessed by the characteristics of gas-discharge images of fingers. One of the most problematic areas of the correctness of medical diagnostics is the dependence of the visual components of the image on the electrical characteristics of the discharge and the physical and chemical characteristics of the surrounding environment.

In the course of the study, methods of modeling the electric discharge current circuit and electrical properties of biostructures were used.

The proposed solution allows taking into account: the amplitude of the impulse voltage of the discharge, the frequency of the impulses, the duration and intensity of the impulses, the polarity, which act as additional diagnostic parameters of the gas-discharge visualization process. Physical processes are considered, and a model of a chain of gas discharge around a biological object in a pulsed electric field is proposed. It is shown that the occurrence of a discharge and the characteristics of the glow depend on the amplitude, duration, frequency, and polarity of the pulse voltage. These additional parameters determine the correctness of further visual diagnostics. Their quantitative measurement and the possibility of objective comparison should be attributed to the advantages of registering the proposed parameters of gas discharge visualization. The specified properties of these parameters provide an additional opportunity to digitally describe the condition of the object under study, and subsequently to automate diagnostics. The structural diagrams of the device for conducting research using the method of gas discharge visualization, the high-voltage impulse voltage generator unit for the hardware consideration of additional gas discharge parameters and their connection with medical and biological indicators have been developed.

The use of the method and means of gas discharge visualization to assess the functional state of the flight crew in the pre- and post-flight period requires the development of special equipment. The proposed technical solutions require experimental verification. Comparative studies of diagnostic conclusions by the method of gas-discharge visualization with traditional medical diagnostics are necessary.

Author Biographies

Volodymyr Oliinyk, National Aerospace University «Kharkiv Aviation Institute»

PhD, Professor of Department

Department of Electronic and Biomedical Computerized Means and Technologies

Mykhailo Babakov, National Aerospace University «Kharkiv Aviation Institute»

PhD, Professor

Department of Electronic and Biomedical Computerized Means and Technologies

Yurii Lomonosov, National Aerospace University «Kharkiv Aviation Institute»

PhD, Associate Professor

Department of Electronic and Biomedical Computerized Means and Technologies

Viacheslav Oliinyk, National Aerospace University «Kharkiv Aviation Institute»

PhD, Associate Professor

Department of Electronic and Biomedical Computerized Means and Technologies

Oleksandr Zinchenko, National Aerospace University «Kharkiv Aviation Institute»

Assistant

Department of Electronic and Biomedical Computerized Means and Technologies

References

  1. Korotkov, K. G. (2001). Osnovy GRV bioelektrokardiografii. Saint Petersburg: SPbGITMO, 354.
  2. Korotkov, K. G. (2007). Printcipy analiza v GRV Bioelektrografii. Saint Petersburg: Renome, 286.
  3. Korotkov, K. G., Matravers, P., Orlov, D. V., Williams, B. O. (2010). Application of Electrophoton Capture (EPC) Analysis Based on Gas Discharge Visualization (GDV) Technique in Medicine: A Systematic Review. The Journal of Alternative and Complementary Medicine, 16 (1), 13–25. doi: http://doi.org/10.1089/acm.2008.0285
  4. Korotkov, K. G. (1982). Issledovanie fizicheskikh protcessov, protekaiushchikh pri gazorazriadnoi vizualizatcii razlichnykh obektov. Leningrad, 227.
  5. Bista, S., Jasti, N., Bhargav, H., Sinha, S., Gupta, S., Ramarao, P., Chaturvedi, S. K., Gangadhar, B. N. (2022). Applications of Gas Discharge Visualization Imaging in Health and Disease: A Systematic Review. Alternative Therapies in Health and Medicine.
  6. Grozdeva, D., Dikova, T. (2018). Gas discharge visualization – historical developments, research dynamics and innovative applications. Scripta Scientifica Salutis Publicae, 4, 27–33. doi: http://doi.org/10.14748/sssp.v4i0.5448
  7. Kolomiiets, R. O. (2005). Zahalni pryntsypy doslidzhennia biolohichnykh ob’iektiv za dopomohoiu metodu hazorozriadnoi vizualizatsii. Visnyk ZhDTU Seriia – Tekhnichni nauky, 4 (35), 61–67.
  8. Korotkov, K. G. et. al. (2012). Pat. No.: US 8,321,010 B2. Method for Determining the Condition of a Biological Object and Device for Making Same. Published: 27.10.2012. Available at: https://patentimages.storage.googleapis.com/6c/4c/11/795f70f41649f8/US8321010.pdf
  9. Korotkov, K. H., Yusubov, R. R.-O. (2011). Sposob opredelenyia sostoianyia byolohycheskoho obъekta y ustroistvo dlia eho realyzatsyy. Vsemyrnaia Orhanyzatsyia Yntellektualnoi Sobstvennosty. Nomer mezhdunarodnoi publykatsyy WO2011/028146 A1.
  10. Korotkov, K. G., Korotkina, S. A., Jusubov, R. R.-O. (2010). Pat. No. US 2010/0106424 A1. Device for determining the state of a biological subject. Published: 29.04.2010. Available at: https://patents.justia.com/patent/20100106424
  11. Chehnev, V. L., Chehneva, L. V., Myniailo, V. N., Sosnovskyi, M. S. (2018). Sposob rezonansno-volnovoho testyrovanyia sostoianyia orhanov y system. Evrazyiskoe patentnoe vedomstvo EA029691Β1. Declareted: 29.08.2011; published: 30.04.2018.
  12. Kukhtyn, V. V., Petelskyi, P. V., Chepurnyi, Yu. V. (2010). Aparatna realizatsiia i diahnostychni mozhlyvosti metodu hazorozriadnoi vizualizatsii. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy «KPI», 143 Seriia – Radiotekhnika. Radioaparatobuduvannia, 42, 139–144.
  13. Korotkov, K. G., Matravers, P., Orlov, D. V., Williams, B. O. (2010). Application of electrophoton capture (EPC) analysis based on gas discharge visualization (GDV) technique in medicine: a systematic review. Journal of Alternative and Complementary Medicine, 16 (1), 13–25. doi: http://doi.org/10.1089/acm.2008.0285
  14. Kostyuk, N., Cole, P., Meghanathan, N., Isokpehi, R. D., Cohly, H. H. P. (2011). Gas Discharge Visualization: An Imaging and Modeling Tool for Medical Biometrics. International Journal of Biomedical Imaging, 2011, 1–7. doi: http://doi.org/10.1155/2011/196460
  15. Babelyuk, V., Dobrovolskiy, Y., Pidkamin, L., Popovych, I., Ushenko, Y. (2020). Usage of a gas-discharge visualization for an investigation of a human internal energy. Fourteenth International Conference on Correlation Optics. doi: http://doi.org/10.1117/12.2553951
  16. Babelyuk, V., Tserkovniuk, R., Babelyuk, N., Zukow, X., Ruzhylo, S., Dubkova, G. et. al. (2021). The parameters of gas discharge visualization (biophotonics) correlated with parameters of acupuncture points, EEG, HRV and hormones. Journal of Education, Health and Sport, 11 (12), 359–373. doi: http://doi.org/10.12775/jehs.2021.11.12.030
  17. Kosulina, N. H., Cherenkov, O. D., Kuchyn, L. F., Sverhun, Yu. F. (2006). Pat. No. 18211 UA. Prystrii dlia fotohrafuvannia ta obstezhennia biolohichnykh ob’iektiv na osnovi efektu Kirlian. MPK (2006) G03B41/00. No. a 2005 11572; declareted: 05.12.2005; published: 15.11.2006, Bul. No. 11, 4.
  18. Kozharin, V. V., Zatsepin, M. M., Domorod, N. Ye. (1986). Elektrorozriadnyi metod vizualizatsii. Minsk, 134.
  19. Pavliuk, O. A. (2015). Metod i zasib hazorozriadnoi vizualizatsii dlia analizu ridynnofaznykh bioobiektiv. Vinnytsia, 240.
  20. Aronov, M. A. (1969). Elektricheskie razriady v vozdukhe pri napriazhenii vysokoi chastoty. Moscow: Energiia, 175.
  21. Bilynskyi, Y. Y., Pavliuk, O. A. (2016). Metody i zasoby hazorozriadnoi vizualizatsii dlia analizu ridynnofaznykh bioob’iektiv. Vinnytsia: VNTU, 120.
  22. Kadomtceva, B. B. (Ed.) (1989). Voprosy teorii plazmy. Moscow: Energoatomizdat, 248.
  23. Raizer, Iu. P. (2009). Fizika gazovogo razriada. Dolgoprudnyi: Intellekt, 725.
  24. Oliinyk, V. P., Babushenko, S. S. (2020). Vybir dodatkovykh parametriv protsesu hazorozriadnoi vizualizatsii dlia zastosuvannia v medychnii diahnostytsi. Informatsiini systemy ta tekhnolohii v medytsyni» (ISM–2020). Kharkiv: Nats. aerokosm. un-t im. M. Ye. Zhukovskoho «Kharkiv. aviats. in-t», 195–197.
  25. Hazorazriadnaia vyzualyzatsyia ustroistva skhemy. Available at: https://www.google.com/search?client=firefox-b-d&q=Гаазорозрядня+визуализация+устройства+схеми#imgrc=p0-1qlesqYztxM

Downloads

Published

2022-08-29

How to Cite

Oliinyk, V., Babakov, M., Lomonosov, Y., Oliinyk, V., & Zinchenko, O. (2022). Modernization of gas discharge visualization for application in medical diagnostics. Technology Audit and Production Reserves, 4(1(66), 21–29. https://doi.org/10.15587/2706-5448.2022.263397

Issue

Section

Electrical Engineering and Industrial Electronics: Original Research