The enhancing energy efficiency in hyperthermia treatment: a frequency-reconfigurable L-Shape antenna design and analysis

Authors

DOI:

https://doi.org/10.15587/2706-5448.2024.298795

Keywords:

frequency reconfigurable, antenna, bandwidth, hyperthermia treatment, gain, varactor, directivity

Abstract

The object of research is a frequency-reconfigurable L-Shape antenna. This paper presents an innovative study focusing on the design and analysis of a frequency-reconfigurable L-Shape antenna with a specific application in Hyperthermia Treatment. The antenna, operating in the frequency range of 2.5 to 8 GHz, utilizes a varactor to achieve agility and simplify design, thereby reducing component count. Constructed with a Roggers RT5880 (lossy) substrate, the L-Shape configuration ensures optimal performance. The incorporation of a single varactor, acting as a junction capacitance, not only enables straightforward tuning but also contributes to enhanced energy efficiency by reducing overall power consumption in the reconfigurable antenna system. The study employed CST Microwave Studio's 3D Electromagnetic field simulation software for time domain solver-based simulations, with validation conducted using the frequency domain solver. Results from the simulations showcase the antenna's performance at different frequency states.

At the tuning state frequency of 2.7 GHz, the antenna exhibits an impressive gain of 1.905 dB and a directivity of 7.530 dB. Similarly, at the tuning state frequency of 6.89 GHz, the gain is measured at 6.806 dB with a directivity of 7.490 dB. The proposed L-Shape antenna design not only demonstrates significant potential for Hyperthermia Treatment, allowing targeted heating within the 2.5 to 8 GHz frequency range but also aligns with the multidisciplinary focus of medical science. This contribution reflects the commitment to advancing medical science through original research, fostering innovation, and promoting energy-efficient solutions with practical applications in clinical settings.

Author Biographies

Segun Akinola, University of Johannesburg

Doctor of Electrical/Electronic Engineering

Johannesburg Business School

 

Reddy Leelakrishna, University of Johannesburg

Professor

Department of Physics

References

  1. Naveen Kumar, M., Venkata Narayana, M., Immadi, G., Satyanarayana, P., Navya, A. (2023). Analysis of a low-profile, dual band patch antenna for wireless applications. AIMS Electronics and Electrical Engineering, 7 (2), 171–186. doi: https://doi.org/10.3934/electreng.2023010
  2. Hum, S. V., Perruisseau-Carrier, J. (2014). Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review. IEEE Transactions on Antennas and Propagation, 62 (1), 183–198. doi: https://doi.org/10.1109/tap.2013.2287296
  3. Songnan Yang, Chunna Zhang, Pan, H. K., Fathy, A. E., Nair, V. K. (2009). Frequency-Reconfigurable Antennas for Multiradio Wireless Platforms. IEEE Microwave Magazine, 10 (1), 66–83. doi: https://doi.org/10.1109/mmm.2008.930677
  4. Aboufoul, T., Parini, C., Chen, X., Alomainy, A. (2013). Pattern-Reconfigurable Planar Circular Ultra-Wideband Monopole Antenna. IEEE Transactions on Antennas and Propagation, 61 (10), 4973–4980. doi: https://doi.org/10.1109/tap.2013.2274262
  5. Bayraktar, O., Civi, O. A., Akin, T. (2012). Beam Switching Reflectarray Monolithically Integrated With RF MEMS Switches. IEEE Transactions on Antennas and Propagation, 60 (2), 854–862. doi: https://doi.org/10.1109/tap.2011.2173099
  6. Christodoulou, C. G., Tawk, Y., Lane, S. A., Erwin, S. R. (2012). Reconfigurable Antennas for Wireless and Space Applications. Proceedings of the IEEE, 100 (7), 2250–2261. doi: https://doi.org/10.1109/jproc.2012.2188249
  7. Haupt, R. L., Lanagan, M. (2013). Reconfigurable Antennas. IEEE Antennas and Propagation Magazine, 55 (1), 49–61. doi: https://doi.org/10.1109/map.2013.6474484
  8. Alhamad, R., Almajali, E., Mahmoud, S. (2023). Electrical Reconfigurability in Modern 4G, 4G/5G and 5G Antennas: A Critical Review of Polarization and Frequency Reconfigurable Designs. IEEE Access, 11, 29215–29233. doi: https://doi.org/10.1109/access.2023.3260073
  9. Ying, K., Gao, Z., Chen, S., Gao, X., Matthaiou, M., Zhang, R., Schober, R. (2024). Reconfigurable Massive MIMO: Harnessing the Power of the Electromagnetic Domain for Enhanced Information Transfer. IEEE Wireless Communications, 1–8. doi: https://doi.org/10.1109/mwc.014.2200418
  10. Sexton, C., Kaminski, N. J., Marquez-Barja, J. M., Marchetti, N., DaSilva, L. A. (2017). 5G: Adaptable Networks Enabled by Versatile Radio Access Technologies. IEEE Communications Surveys & Tutorials, 19 (2), 688–720. doi: https://doi.org/10.1109/comst.2017.2652495
  11. van der Zee, J. (2002). Heating the patient: a promising approach? Annals of Oncology, 13 (8), 1173–1184. doi: https://doi.org/10.1093/annonc/mdf280
  12. Datta, N. R., Rogers, S., Ordóñez, S. G., Puric, E., Bodis, S. (2015). Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis. International Journal of Hyperthermia, 32 (1), 31–40. doi: https://doi.org/10.3109/02656736.2015.1099746
  13. Franckena, M., Lutgens, L. C., Koper, P. C., Kleynen, C. E., van der Steen-Banasik, E. M., Jobsen, J. J., Leer, J. W., Creutzberg, C. L., Dielwart, M. F., van Norden, Y., Canters, R. A. M., van Rhoon, G. C., van der Zee, J. (2009). Radiotherapy and Hyperthermia for Treatment of Primary Locally Advanced Cervix Cancer: Results in 378 Patients. International Journal of Radiation Oncology*Biology*Physics, 73 (1), 242–250. doi: https://doi.org/10.1016/j.ijrobp.2008.03.072
  14. Seynhaeve, A. L. B., Amin, M., Haemmerich, D., van Rhoon, G. C., ten Hagen, T. L. M. (2020). Hyperthermia and smart drug delivery systems for solid tumor therapy. Advanced Drug Delivery Reviews, 163-164, 125–144. doi: https://doi.org/10.1016/j.addr.2020.02.004
  15. Chang, M., Hou, Z., Wang, M., Li, C., Lin, J. (2020). Recent Advances in Hyperthermia Therapy‐Based Synergistic Immunotherapy. Advanced Materials, 33 (4). doi: https://doi.org/10.1002/adma.202004788
  16. Rajebi, S., Ghobadi, C., Nourinia, J., Mostafapour, E. (2019). SAR Enhancement of Slot Microstrip Antenna by Using Silicon Layer in Hyperthermia Applications. Wireless Personal Communications, 111 (3), 1761–1774. doi: https://doi.org/10.1007/s11277-019-06955-1
  17. Chishti, A. R., Aziz, A., Aljaloud, K., Tahir, F. A., Abbasi, Q. H., Khan, Z. U., Hussain, R. (2023). A sub 1 GHz ultra miniaturized folded dipole patch antenna for biomedical applications. Scientific Reports, 13 (1). doi: https://doi.org/10.1038/s41598-023-36747-4
  18. Rodrigo, D., Cetiner, B. A., Jofre, L. (2014). Frequency, Radiation Pattern and Polarization Reconfigurable Antenna Using a Parasitic Pixel Layer. IEEE Transactions on Antennas and Propagation, 62 (6), 3422–3427. doi: https://doi.org/10.1109/tap.2014.2314464
  19. Venneri, F., Costanzo, S., Di Massa, G. (2012). Reconfigurable aperture-coupled reflectarray element tuned by single varactor diode. Electronics Letters, 48 (2), 68. doi: https://doi.org/10.1049/el.2011.3691
  20. Nguyen-Trong, N., Hall, L., Fumeaux, C. (2016). A Frequency- and Pattern-Reconfigurable Center-Shorted Microstrip Antenna. IEEE Antennas and Wireless Propagation Letters, 15, 1955–1958. doi: https://doi.org/10.1109/lawp.2016.2544943
  21. Chen, W., Lv, G., Liu, X., Wang, D., Ghannouchi, F. M. (2020). Doherty PAs for 5G Massive MIMO: Energy-Efficient Integrated DPA MMICs for Sub-6-GHz and mm-Wave 5G Massive MIMO Systems. IEEE Microwave Magazine, 21 (5), 78–93. doi: https://doi.org/10.1109/mmm.2020.2971183
  22. Nguyen-Trong, N., Piotrowski, A., Fumeaux, C. (2017). A Frequency-Reconfigurable Dual-Band Low-Profile Monopolar Antenna. IEEE Transactions on Antennas and Propagation, 65 (7), 3336–3343. doi: https://doi.org/10.1109/tap.2017.2702664
  23. Chen, G., Yang, X.-L., Wang, Y. (2012). Dual-Band Frequency-Reconfigurable Folded Slot Antenna for Wireless Communications. IEEE Antennas and Wireless Propagation Letters, 11, 1386–1389. doi: https://doi.org/10.1109/lawp.2012.2227293
  24. Cetiner, B. A., Crusats, G. R., Jofre, L., Biyikli, N. (2010). RF MEMS Integrated Frequency Reconfigurable Annular Slot Antenna. IEEE Transactions on Antennas and Propagation, 58 (3), 626–632. doi: https://doi.org/10.1109/tap.2009.2039300
  25. Tu, Z.-H., Li, W.-A., Chu, Q.-X. (2014). Single-Layer Differential CPW-Fed Notch-Band Tapered-Slot UWB Antenna. IEEE Antennas and Wireless Propagation Letters, 13, 1296–1299. doi: https://doi.org/10.1109/lawp.2014.2332355
The enhancing energy efficiency in hyperthermia treatment: a frequency-reconfigurable L-Shape antenna design and analysis

Downloads

Published

2023-12-29

How to Cite

Akinola, S., & Leelakrishna, R. (2023). The enhancing energy efficiency in hyperthermia treatment: a frequency-reconfigurable L-Shape antenna design and analysis. Technology Audit and Production Reserves, 1(1(75), 43–50. https://doi.org/10.15587/2706-5448.2024.298795

Issue

Section

Electrical Engineering and Industrial Electronics