Development of a model for coloring raster elements of polynomial transformation of digital images

Authors

DOI:

https://doi.org/10.15587/2706-5448.2025.323533

Keywords:

polynomial transformation, coloring raster elements, simulator, gradation characteristics, coloring characteristics, optical density

Abstract

The object of the study is the process of pre-printing image preparation, in particular the final stage of preparing an image for printing – rasterization using polynomial transformation.

One of the problems in the process of preparing an image for printing is the lack of a program in computer graphics programs and a raster processor for constructing gradation characteristics and rasterization characteristics.

This work used scientific research methods, in particular the method of mathematical modeling, object-oriented programming and the MATLAB:Simulink software package. In the process of the study, rasterization models of polynomial transformation of digital images were built and simulators for simulation modeling were developed.

Gradation characteristics, rasterization characteristics and optical density of the raster elements were obtained, which quantitatively and qualitatively describes the raster tone reproduction of printed images. The developed model of coloring for determining the amount of paint on the surface of raster elements of polynomial transformation of images of light tones allows to correct the image based on the analysis of the properties of gradation characteristics, characteristics of screening and optical density in a wide range of tone reproduction.

Thanks to the proposed model, the informativeness of the analysis of tone reproduction is significantly expanded. This is a significant advantage over the model based on power transformation, which has limitations in terms of the reproduction of dark tones and causes the phenomenon of posterization.

Based on the obtained results of coloring raster elements of typical variants of polynomial transformation for a polynomial thickness value H=1 μm it was established that an increase in the thickness of the paint layer by 20 % of the nominal shifts the initial values of coloring. In particular: at V=1.2 the characteristics shift towards dark tones – the image darkens, and at V=0.8 the characteristics of coloring shift towards midtones – the image becomes lighter.

The results of the conducted studies of raster tones can be applied at the stage of preparing digital images for rasterization in computer publishing systems.

Author Biography

Bohdan Kavyn, Lviv Polytechnic National University

PhD Student

Department of Computer Technologies in Publishing and Printing Processes

References

  1. Verkhola, M., Durniak, B., Huk, I., Panovyk, U. (2014). Informatsiina tekhnolohiia vyznachennia tochnosti vidtvorennia zobrazhennia na vidbytkakh farbodrukarskoiu systemoiu poslidovno paralelnoi struktury. Kompiuterni tekhnolohii drukarstva, 31, 3–17.
  2. Lukiv, M. M. (2012). Tsyfrovi tekhnolohii drukarstva. Lviv: UAD, 488.
  3. Durnyak, B., Lutskiv, M., Shepita, P., Hunko, D., Savina, N. (2021). Formation of linear characteristics of normalized raster transformation for rhombic elements. Intelligent Information Technologies & System of Information Security, CEUR Workshop Proceedings, 2853, 127–133.
  4. Serdiuk, Yu. O. (2023). Vyznachennia kontrastnoi chutlyvosti hama peretvorennia zobrazhen temnykh toniv. Polihrafiia i vydavnycha sprava, 1 (85), 22–31.
  5. Kovalskyi, B. M., Semeniv, M. V., Shovheniuk, M. V. (2016). Kompiuterna prohrama syntezu zobrazhennia na vidbytku dlia novoi informatsiinoi ta tradytsiinykh tekhnolohii kolorovoho druku. Science and Education a New Dimention: Natural and Technical Science, IV (10 (91)), 72–78.
  6. Pashulia, P. L. (2011). Standartyzatsiia, metrolohiia, vidpovidnist, yakist u polihraf. Lviv: UAD, 408.
  7. Scott, E. (2023). Umbaugh Computer Vision and Image Analysis Digital Image Processing and Analysis. CRC Press, 441.
  8. Scott, E. (2023). Umbaugh Digital Image Enhancement, Restoration and Compression Digital Image Processing and Analysis. CRC Press, 489.
  9. Distante, A., Distante, C. (2020). Handbook of Image Processing and Computer Vision. Vol. 2: From Image to Pattern. Cham: Springer Nature, 448. https://doi.org/10.1007/978-3-030-42374-2
  10. Gonzales, R. C., Woods, R. E. (2008). Digital image processing: international Version. lnc publishind as Prentice Hall. Copyright, 1104.
  11. Buczynski, L. (2005). Skanery i skanowanie. Warszawa: Wydawnictwo MIKOMA, 88.
  12. Kaminski, B. (2001). Nowoczesny prepres. Warszawa: Wydawca: Translator, 352.
  13. Lukiv, M. M., Muzyka, O. O. (2022). Modeliuvannia rastrovoho peretvorennia tsyfrovykh zobrazhen elementiv kvadratnoi formy. Kompiuterni tekhnolohii drukarstva, 2 (48), 257–267.
  14. Bredies, K., Lorenz, D. (2018). Mathematical Image Processing. Birkhäuser. Cham: Springer Nature, 481.
  15. Lutskiv, M. M., Nakonechnyi, M. D. (2022). Modeliuvannia i analiz nafarblennia tsyfrovykh zobrazhen. Kompiuterni tekhnolohii drukarstva, 2 (48), 245–256.
  16. Durniak, B. V., Senkivskyi, V. M., Lutskiv, M. M., Musiiovska, M. M. (2021). Informatsiina tekhnolohiia tonovidtvorennia v korotkykh farbodrukarskykh systemakh poslidovnoi struktury. Lviv: UAD, 176.
Development of a model for coloring raster elements of polynomial transformation of digital images

Downloads

Published

2025-04-19

How to Cite

Kavyn, B. (2025). Development of a model for coloring raster elements of polynomial transformation of digital images. Technology Audit and Production Reserves, 2(2(82), 27–31. https://doi.org/10.15587/2706-5448.2025.323533

Issue

Section

Information Technologies