Establishment of regularities of biochemical transformations in grape berries during refrigerated storage with preliminary thermal treatment

Authors

DOI:

https://doi.org/10.15587/2706-5448.2025.323631

Keywords:

table grape varieties, heat treatment of grapes, refrigerated storage of grapes, biochemical parameters of grapes

Abstract

The paper is devoted to the study of biochemical transformations in grapes during refrigeration storage with preliminary heat treatment. The object of the study was nine table grape varieties. Of these, white Ganja Table, Karaburnu, Chasselas White, Agadai; pink Nimrang, Marandi Shamakhi, Taifi Pink; red Kyzyl Izyum and Muscat Hamburg. For better preservation of table grapes and reduction of nutrient losses before placing them in the refrigeration chamber, they were preliminarily subjected to heat treatment for 5 minutes at a temperature of 65–70 °C in a drying cabinet. Then the grapes were stored in refrigeration chambers for 6–8 months, at a temperature of 0–1 °C and air humidity of 85–95 %. Biochemical studies of the grapes were conducted before placing them and every 30–40 days until the end of storage, as well as before and after heat treatment. After heat treatment, all grape varieties show a gradual restoration of the activity of the studied enzymes during the storage period, but this activity does not reach the initial level. Studies have shown that after heating the products, reactivation is possible if at least a weak enzyme activity is preserved, and it is more intense during the first day of storage. During long-term refrigeration of grapes in a refrigeration chamber, a decrease in the catalytic activity of enzyme systems leads to a decrease in the rate of catalytic processes, that is, biochemical transformations of carbohydrates, phenolic substances, vitamins, organic acids, pectin substances and other components, and thereby contributes to the preservation of the nutritional value of grapes. However, storing grapes with preliminary heat treatment contributes to a greater decrease in the catalytic activity of enzymes, and thereby inhibition of biochemical transformations of grape nutrients. This, ultimately, contributes to better preservation of grapes, their aroma, taste, appearance and their chemical components. Marandi Shamakhi, Nimrang, Ganja Table and Karaburnu are distinguished by a smaller change in the content of vital components.

Author Biographies

Ilhama Kazimova, Azerbaijan State University of Economics

PhD, Senior Lecturer

Department of Engineering and Applied Sciences

Vugar Mikayilov, Azerbaijan State Oil and Industry University

Professor

Department of Technology of Organic Substances and High-Molecular Compounds

Elza Omarova, Azerbaijan State University of Economics

PhD, Associate Professor

Department of Engineering and Applied Sciences

Afet Gasimova, University of Technology of Azerbaijan

PhD, Associate Professor

Department of Food Engineering and Expertise

Ahad Nabiyev, University of Technology of Azerbaijan

Doctor of Biological Sciences, Professor

Department of Food Engineering and Expertise

References

  1. Khan, N., Fahad, S., Naushad, M., Faisal, S. (2020). Grape Production Critical Review in the World. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3595842
  2. Feng, Y., Wang, J., Chen, Y., Pan, L., Li, D. (2024). Selection of Grape Varieties for Canned Processing Based on Peeling Performance, Sensory Quality, and Storage Stability. Sustainability, 16 (23), 10689. https://doi.org/10.3390/su162310689
  3. Zhou, D.-D., Li, J., Xiong, R.-G., Saimaiti, A., Huang, S.-Y., Wu, S.-X. et al. (2022). Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods, 11 (18), 2755. https://doi.org/10.3390/foods11182755
  4. Gorlov, S. M., Tiagushcheva, A. A., Iatcushko, E. S., Karpenko, E. N. (2020). Sovremennye tekhnologii khraneniia vinograda. Nauchnyi zhurnal KubGAU, 159 (5). Available at: http://ej.kubagro.ru/2020/05/pdf/22.pdf
  5. Wang, W.-N., Qian, Y.-H., Liu, R.-H., Liang, T., Ding, Y.-T., Xu, X.-L. et al. (2023). Effects of Table Grape Cultivars on Fruit Quality and Aroma Components. Foods, 12 (18), 3371. https://doi.org/10.3390/foods12183371
  6. Asadullayev, R. A. (2024). Grapes with fungal infection during long-term storage. SABRAO Journal of Breeding and Genetics, 56 (5), 2026–2032. https://doi.org/10.54910/sabrao2024.56.5.25
  7. Crisosto, C. H., Garner, D., Crisosto, G. (2003). Developing optimal controlled atmosphere conditions for “Thompson seedless” table grapes. Acta Horticulturae, 600, 817–821. https://doi.org/10.17660/actahortic.2003.600.128
  8. Magomedov, G. G., Magomedova, E. S. (2011). Kratkovremennoe i dlitelnoe khranenie stolovykh sortov vinograda. Vinodelie i vinogradarstvo, 6, 34–35.
  9. Alem, H., Rigou, P., Schneider, R., Ojeda, H., Torregrosa, L. (2018). Impact of agronomic practices on grape aroma composition: a review. Journal of the Science of Food and Agriculture, 99 (3), 975–985. https://doi.org/10.1002/jsfa.9327
  10. Nikitin, A. L., Makarkina, M. A., Galasheva, A. M. (2023). The Effect of the Temperature Regime of Storage on Losses from Functional Disorders and the Intensity of Surface Damage to Apple Fruits by Scald. Storage and Processing of Farm Products, 1, 212–225. https://doi.org/10.36107/spfp.2023.338
  11. Koltcov, R. P. (2022). Osobennosti vakuumnoi sushki plodov i ovoshchei. Nauka i obrazovanie, 2, 159–163.
  12. Pənahov, T. M., Səlimov, V. S., Zari, A. M. (2010). Azərbaycanda üzümçülük. Bakı: Müəllim, 224.
  13. Cherviak, S. N., Rybalko, E. A., Oleinikova, V. A., Ermikhina, M. V. (2024). Assessment of the effect of climatic factors on the indicators of red grape varieties. Siberian Journal of Life Sciences and Agriculture, 16 (5), 367–386. https://doi.org/10.12731/2658-6649-2024-16-5-997
  14. Liu, Y., Sabadash, S., Duan, Z., Deng, C. (2022). The influence of different drying methods on the quality attributes of beetroots. Eastern-European Journal of Enterprise Technologies, 3 (11 (117)), 60–68. https://doi.org/10.15587/1729-4061.2022.258049
  15. Nəbiyev, Ə. Ə., Moslemzadeh, E. Ə. (2008). Qida məhsullarının biokimyası. Bakı: “Elm”, 444.
  16. Gerzhikova, V. G. (Ed.) (2009). Metody tekhnokhimicheskogo kontrolia v vinodelii. Simferopol: Tavrida, 304.
  17. Vlassi, E., Vlachos, P., Kornaros, M. (2018). Effect of ozonation on table grapes preservation in cold storage. Journal of Food Science and Technology, 55 (6), 2031–2038. https://doi.org/10.1007/s13197-018-3117-y
  18. Flamini, R., Traldi, P. (2009). Mass Spectrometry in Grape and Wine Chemistry. Hoboken: Jonn Wiley&Sons. Inc https://doi.org/10.1002/9780470552926
  19. Nəbiyev, Ə. Ə., Həsənova, N. R., Tağıyev, M. M., Abadov, M. K., Əhmədova, M. İ. (2008). Qida məhsulları texnologiyasının nəzəri əsasları. Bakı: Elm, 248.
  20. Lutkova, N. Yu., Viuhyna, M. A., Ermolyn, D. V., Lutkov, Y. P. (2025). Study of quality indicators in the system “grapes-wine material” to determine the optimal direction of use of grapes from the Belbek River Valley. Fruit growing and viticulture of South Russia, 91 (1), 116–127. https://doi.org/10.30679/2219-5335-2025-1-91-116-127
  21. Nəbiyev, Ə. Ə. (2010). Şərabın kimyası. Bakı: Elm, 472.
  22. Xiao, X., Zhang, X., Fu, Z., Mu, W., Zhang, X. (2018). Energy Conservation Potential Assessment Method for Table Grapes Supply Chain. Sustainability, 10 (8), 2845. https://doi.org/10.3390/su10082845
  23. Zhang, Y., Suo, K., Feng, Y., Yang, Z., Zhu, Y., Wang, J. et al. (2024). Catalytic infrared radiation dry-peeling Technology for non-Frozen and Frozen Grapes: Effects on temperature, peeling performance, and quality attributes. Food Chemistry, 455, 139854. https://doi.org/10.1016/j.foodchem.2024.139854
  24. Orudzhov, V. M., Gulieva, G. I., Nabiev, A. A. (2009). Issledovanie fenolnykh soedinenii pri khranenii vinograda. Vinodelie i vinogradarstvo, 5, 38–39.
  25. Iskakova, G., Kizatova, M., Baiysbayeva, M., Azimova, S., Izembayeva, A., Zharylkassynova, Z. (2021). Justification of pectin concentrate safe storage terms by pectin mass ratio. Eastern-European Journal of Enterprise Technologies, 4 (11 (112)), 25–32. https://doi.org/10.15587/1729-4061.2021.237940
  26. Shingisov, A., Alibekov, R., Evlash, V., Yerkebayeva, S., Mailybayeva, E., Tastemirova, U. (2023). Creation of a methodology for determining the intensity of moisture evaporation within vacuum drying of fruits. Eastern-European Journal of Enterprise Technologies, 1 (11 (121)), 6–14. https://doi.org/10.15587/1729-4061.2023.273709
  27. Pusik, L., Pusik, V., Bondarenko, V., Gaevaya, L., Kyruchina, N., Kuts, O. et al. (2022). Determiningcarrot preservation depending on the root quality and size, as well as on storage techniques. Eastern-European Journal of Enterprise Technologies, 1 (11 (115)), 26–32. https://doi.org/10.15587/1729-4061.2022.251785
  28. Pusik, L., Pusik, V., Lyubymova, N., Bondarenko, V., Rozhov, A., Sergienko, O., Denisenko, S., Kononenko, L. (2019). Preservation of parsnip root vegetable depending on the degree of ripeness, varietal features, and storage techniques. Eastern-European Journal of Enterprise Technologies, 1 (11 (97)), 34–41. https://doi.org/10.15587/1729-4061.2019.155313
Establishment of regularities of biochemical transformations in grape berries during refrigerated storage with preliminary thermal treatment

Downloads

Published

2025-02-26

How to Cite

Kazimova, I., Mikayilov, V., Omarova, E., Gasimova, A., & Nabiyev, A. (2025). Establishment of regularities of biochemical transformations in grape berries during refrigerated storage with preliminary thermal treatment. Technology Audit and Production Reserves, 1(3(81), 31–38. https://doi.org/10.15587/2706-5448.2025.323631

Issue

Section

Food Production Technology