Research of heat capacity of multicomponent carbon-aluminium composition materials

Authors

DOI:

https://doi.org/10.15587/2312-8372.2014.34776

Keywords:

composite materials, heat capacity, component composition, temperature, experiment

Abstract

Despite the previously conducted specific thermal researches of one-and two-phase composite materials there are a need for integrated thermal researches for new multicomponent carbon-aluminum composites of different composition and content obtained by hot pressing. This article presents the results of experimental researches of the heat capacity of the samples of carbon-aluminum composite materials of tribotechnical purpose obtained using the comparative method of dynamic calorimeter with a heat meter and adiabatic membrane. The influence of both the component composition and content of the composites on heat capacity indicators is shown. A comparative analysis of the results with previously known heat capacity calculated indicators is conducted. It is shown that the values of maximum deviations between experimental and calculated values are less than 20%. The research results have a scientific and practical interest for the development of new units for dry friction engineering, aviation and space industry.

Author Biography

Оксана Сергеевна Воденникова, Zaporozhye State Engineering Academy, Lenina ave., 226, Zaporizhzhya, Ukraine, 69006

Candidate of Technical Sciences, Associate Professor

Department of Ferrous Metallurgy 

References

  1. Skorohod, V. V. (1995). Teoriia fizicheskih svoystv poristyh i kompozitsionnyh materialov i printsipy upravleniia ih mikrostrukturoy v tehnologicheskih protsessah. Poroshkovaia metallurgiia, № 1/2, 53–71.
  2. Akhlaghi, F., Zare-Bidaki, A. (2009, January). Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024–graphite composites produced by in situ powder metallurgy method. Wear, Vol. 266, № 1-2, 37–45. doi:10.1016/j.wear.2008.05.013
  3. Skachkov, V. A., Vodennіkov, S. A., Sergienko, S. S., Ivanov, V. I., Vodennikova, O. S. (2010). Osobennosti polucheniia tribotehnicheskih uglerod-aliuminievyh kompozitov metodami poroshkovoi metallurgii. Problems of Tribology, № 4, 91–94.
  4. Koshlak, A. V. (2008). Formirovanie teplofizicheskih harakteristik poristogo materiala. Matematichne modeliuvannia, № 2 (19), 81-84.
  5. Riahi, A., Alpas, A. (2001, October). The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear, Vol. 251, № 1-12, 1396–1407. doi:10.1016/s0043-1648(01)00796-7
  6. Skorohod, V. V. (2003). Sloistye kompozity: strukturnaia klassifikatsiia, teplofizicheskie i mehanicheskie svoystva. Poroshkovaia metallurgiia, № 9/10, 1–12.
  7. Voytov, V. A., Velikodnyy, D. A. (2009). Eksperimental'naia otsenka tribotehnicheskih harakteristik razlichnyh konstruktsiy tribosistem s teplovymi soprotivleniiami. Chast' І. Metodicheskiy podhod v issledovaniiah. Problems of Tribology, № 2, 25-31.
  8. Skachkov, V. A., Vodennikov, S. A., Vodennikova, O. S. et al. (2012). K opredeleniiu teploemkosti mnogokomponentnyh uglerod-aliuminievyh kompozitov. Kluczowe aspekty naukowej dzialalnosci - 2012: Materialy VIII miedzyarodwej naukowi-praktycznej konferencji, 7-15 stycznia 2012 roku: Przemysl. Nauka I studia, 55-57.
  9. Platunov, E. S. (1973). Teplofizicheskie izmereniia v monotonnom rezhime. Leningrad: Energiia, 142.
  10. Vodennikov, S. A., Skachkov, V. A., Vodennikova, O. S. et al. (2012). Teplofizicheskie harakteristiki metallouglerodnyh kompozitsionnyh materialov. Novі materіali і tehnologіi v metalurgіi ta mashinobuduvannі, № 1, 27-30

Published

2014-12-23

How to Cite

Воденникова, О. С. (2014). Research of heat capacity of multicomponent carbon-aluminium composition materials. Technology Audit and Production Reserves, 6(1(20), 72–75. https://doi.org/10.15587/2312-8372.2014.34776