Investigation of phase equilibria in polyamorphous systems

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.38138

Keywords:

liquid – liquid equilibrium, critical lines, multicritical points, metastable states

Abstract

The phase behavior of polyamorphous systems based on modified Van der Waals equation with several critical points is investigated in the article. A model of phase equilibria in binary polyamorphous systems, including liquid-liquid equilibria in one-component systems and evaluation of critical lines in a binary mixture.

It is proposed an algorithm for the search of parameters according to the excluded volume for Van der Waals model from density and temperature, which makes it possible to generate more than one critical point in a one-component fluid. To test the hypothesis of the continuity of critical lines in binary mixtures of polyamorphous fluids as an initial approximation used parameters near the critical point of the second component. Calculation of critical curves for binary polyamorphous mixtures confirmed the continuity of the transition from a stable critical point of the first metastable point of the second.

Author Biography

Сергей Викторович Артеменко, Odessa National Academy of Food Technology, 1/3 Dvorianskaya St., 65082, Odessa

Doctor of Technical Sciences, Senior Researcher, Professor

Chair of information systems and networks 

References

  1. Poole, P., Sciortino, F., Grande, T., Stanley, H., Angell, C. (1994, September). Effect of Hydrogen Bonds on the Thermodynamic Behavior of Liquid Water. Physical Review Letters, Vol. 73, № 12, 1632–1635. doi:10.1103/physrevlett.73.1632
  2. Truskett, T. M., Debenedetti, P. G., Sastry, S., Torquato, S. (1999). A single-bond approach to orientation-dependent interactions and its implications for liquid water. The Journal of Chemical Physics, Vol. 111, № 6, 2647-2654. doi:10.1063/1.479540
  3. Loerting, T., Giovambattista, N. (2006, November 30). Amorphous ices: experiments and numerical simulations. Journal of Physics: Condensed Matter, Vol. 18, № 50, R919–R977. doi:10.1088/0953-8984/18/50/r01
  4. Jeffery, C. A., Austin, P. H. (1999). A new analytic equation of state for liquid water. The Journal of Chemical Physics, Vol. 110, № 1, 484-489. doi:10.1063/1.477977
  5. Skibinsky, A., Buldyrev, S., Franzese, G., Malescio, G., Stanley, H. (2004). Liquid–liquid phase transitions for soft–core attractive potentials. Physical Review E., Vol. 69, № 6, 061206-061212. doi:10.1103/physreve.69.061206
  6. Mishima, O., Stanley, H. (1998). The relationship between liquid, supercooled and glassy water. Nature, Vol. 396, № 6709, 329–335. doi:10.1038/24540
  7. Angell, C. A. (2008, February 1). Insights into Phases of Liquid Water from Study of Its Unusual Glass-Forming Properties. Science, Vol. 319, № 5863, 582–587. doi:10.1126/science.1131939
  8. Liu, H. (2006). A very accurate hard sphere equation of state over the entire stable and metastable region. Statistical Mechanics. Available: http://arxiv.org/abs/cond-mat/0605392
  9. Debenedetti, P. G. (2003, October 31). Supercooled and glassy water. Journal of Physics: Condensed Matter, Vol. 15, № 45, R1669–R1726. doi:10.1088/0953-8984/15/45/r01
  10. Konynenburg, P. H. V., Scott, R. L. (1980, December 18). Critical Lines and Phase Equilibria in Binary Van Der Waals Mixtures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 298, № 1442, 495–540. doi:10.1098/rsta.1980.0266
  11. Ashbaugh, H. S., Truskett, T. M., Debenedetti, P. G. (2002). A simple molecular thermodynamic theory of hydrophobic hydration. The Journal of Chemical Physics, Vol. 116, № 7, 2907-2921. doi:10.1063/1.1436479

Published

2015-01-29

How to Cite

Артеменко, С. В. (2015). Investigation of phase equilibria in polyamorphous systems. Technology Audit and Production Reserves, 1(4(21), 41–45. https://doi.org/10.15587/2312-8372.2015.38138

Issue

Section

Technologies of food, light and chemical industry