Mathematical modeling of chemical reactions in microreactors
DOI:
https://doi.org/10.15587/2312-8372.2015.41070Keywords:
microreactor, structural reactor, microchannel, kinetics, modelingAbstract
In this paper it is conducted a review of published data on the use of microstructural reactors for the optimization of chemical processes and reactions, a detailed description of which is possible with the use of modern methods and modeling tools.
Microreactor is a miniature reactor apparatus having dimensions in the submillimeter range. Chemical reactions in the microreactor are carried out in one or a plurality of parallel channels, the channel diameter is not more than the mean free path of the molecules in the gas phase reactions. The advantages of the microreactors may include a large surface area contact between the phases, laminar flow (and reducing energy costs and increasing residence time), high radial diffusion coefficient, simplifying scaling and enhanced characteristics of safety selectivity of processes occurring in them.
On the basis of established technical and economic advantages of microsystem devices it is proved the feasibility of their implementation in production.
References
- Gerbst, A., Shudegov, V. E., Yarulin, R. S., Nazemtsev, L. V. (2012). Microreactors and nanotechnology. Nanotechnology. Ekologiia. Proizvodstvo, 3 (16), 78-82.
- Hessel, V., Löwe, H., Müller, A., Kolb, G. (2005). Chemical Micro Process Engineering. Processing and Plants. Wiley-VCH Verlag: Weinheim, 651. doi:10.1002/3527603581
- Hessel, V., Ehrfeld, W., Golbig, K., Haverkamp, V., Löwe, H., Storz, M., Wille, Ch., Guber, A. E., Jähnisch, K., Baerns, M. (2000). Gas / Liquid Microreactors for Direct Fluorination of Aromatic Compounds Using Elemental Fluorine. Microreaction Technology: Industrial Prospects. Springer Science + Business Media, 526–540. doi:10.1007/978-3-642-59738-1_55
- Hessel, V., Löwe, H. (2002, March). Mikroverfahrenstechnik: Komponenten – Anlagenkonzeption – Anwenderakzeptanz – Teil 2. Chemie Ingenieur Technik, Vol. 74, № 3, 185–207. doi:10.1002/1522-2640(200203)74:3<185::aid-cite185>3.0.co;2-7
- Herskowits, D., Herskowits, V., Stephan, K., Tamir, A. (1990, January). Characterization of a two-phase impinging jet absorber—II. Absorption with chemical reaction of CO2 in NaOH solutions. Chemical Engineering Science, Vol. 45, № 5, 1281–1287. doi:10.1016/0009-2509(90)87120-h
- Jähnisch, K., Hessel, V., Löwe, H., Baerns, M. (2004, January 16). Chemistry in Microstructured Reactors. Angewandte Chemie International Edition, Vol. 43, № 4, 406–446. doi:10.1002/anie.200300577
- Ehrfeld, W. (1995). DECHEMA-Monographs. Frankfurt: DECHEMA, 132.
- Krummradt, H., Koop, U., Stoldt, J. (2000). Experiences with the use of microreactors in organic synthesis. Microreaction Technology: Industrial Prospects. Springer Science + Business Media, 181–186. doi:10.1007/978-3-642-59738-1_17
- Borovinskaia, E. S. (2008). Matematicheskie modeli i kompleksy programm dlia issledovaniia i optimizatsii zhidkofaznykh reaktsii v mikroreaktorakh. Sankt-Peterburg, 190.
- Herwig, H. (2002, September). Flow and Heat Transfer in Micro Systems: Is Everything Different or Just Smaller? Journal of Applied Mathematics and Mechanics, Vol. 82, № 9, 579–586. doi:10.1002/1521-4001(200209)82:9<579::aid-zamm579>3.0.co;2-v
- Wörz, O., Jäckel, K.-P., Richter, T., Wolf, A. (2001, February). Microreactors – A New Efficient Tool for Reactor Development. Chemical Engineering & Technology, Vol. 24, № 2, 138-142. doi:10.1002/1521-4125(200102)24:2<138::aid-ceat138>3.0.co;2-c
- Wörz, O., Jäckel, K. P. (1997). Winzlingemitgroßer Zukunft-Mikroreaktoren fur die Chemie. Chem. Tech., Vol. 26, 130-134.
- Lerou, J. J.; In: Ehrfeld, W. (1996). Mycrosystem Technology for Chemical and Biological Microreactors. DECHEMA Monographs. VHC: Weinheim, Vol. 132, 51-69.
- Yarylin, R., Herbst A. (2012). Nepreryvnye protochnye mikroreaktory [Continuous flow microreactors]. Microreactors and nanotechnology, 44–49.
- Ehrfeld, W., Hessel, V., Löwe, H. (2000). Microreactors. New technology for modern chemistry. Weinheim: Wiley–VCH Verlag GmbH., 651. doi:10.1002/3527601953
- Ehrfeld, W., Hessel, V., Löwe, H. (1999). Encyclopedia of Industrial Chemistry. Weinheim: Wiley–VCH., 583.
- Schubert, K., Edrfeld, W., Rinard, I. H., Wegeng, R. S. (1998). Realization and testing of microstructure reactors. Micro heat exchangers and micromixers for industrial applications in chemical engineering. Proceeding of the conference on Process Minituarization: 2nd International Conference on Microreaction Technology, IMRET2, 88-95.
- Haidarov, V. G. (2013). Matematicheskoe modelirovanie rezhimov techenie potoka v mikrostrukturnykh sistemakh. Sankt-Peterburg, 125.
- Zhang, Z., Yim, C., Lin, M., Cao, X. (2008). Quantitative characterization of micromixing simulation. Biomicrofluidics, Vol. 2, № 3, 034104. doi:10.1063/1.2966454
- Radl, S., Suzzi, D., Khinast, J. G. (2010, November 3). Fast Reactions in Bubbly Flows: Film Model and Micromixing Effects. Industrial & Engineering Chemistry Research, Vol. 49, № 21, 10715–10729. doi:10.1021/ie100539g
- Vaccaro, S., Ciabelli, P. (2012). Results of modeling of a catalytic micro-reactor. 31st Meeting on Combustion, 1-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Юлія Анатоліївна Мірошниченко, Юрій Олександрович Безносик, Олена Сергіївна Бондаренко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.