Mathematical modeling of chemical reactions in microreactors

Authors

  • Юлія Анатоліївна Мірошниченко National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-2906-8482
  • Юрій Олександрович Безносик National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-7425-807X
  • Олена Сергіївна Бондаренко National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6534-5542

DOI:

https://doi.org/10.15587/2312-8372.2015.41070

Keywords:

microreactor, structural reactor, microchannel, kinetics, modeling

Abstract

In this paper it is conducted a review of published data on the use of microstructural reactors for the optimization of chemical processes and reactions, a detailed description of which is possible with the use of modern methods and modeling tools.

Microreactor is a miniature reactor apparatus having dimensions in the submillimeter range. Chemical reactions in the microreactor are carried out in one or a plurality of parallel channels, the channel diameter is not more than the mean free path of the molecules in the gas phase reactions. The advantages of the microreactors may include a large surface area contact between the phases, laminar flow (and reducing energy costs and increasing residence time), high radial diffusion coefficient, simplifying scaling and enhanced characteristics of safety selectivity of processes occurring in them.

On the basis of established technical and economic advantages of microsystem devices it is proved the feasibility of their implementation in production.

Author Biographies

Юлія Анатоліївна Мірошниченко, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056

Graduate student

Department of Cybernetics of Chemical Technology Processes

Юрій Олександрович Безносик, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Associate Professor

Department of Cybernetics of Chemical Technology Processes

Олена Сергіївна Бондаренко, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Associate Professor

Department of Cybernetics of Chemical Technology Processes

References

  1. Gerbst, A., Shudegov, V. E., Yarulin, R. S., Nazemtsev, L. V. (2012). Microreactors and nanotechnology. Nanotechnology. Ekologiia. Proizvodstvo, 3 (16), 78-82.
  2. Hessel, V., Löwe, H., Müller, A., Kolb, G. (2005). Chemical Micro Process Engineering. Processing and Plants. Wiley-VCH Verlag: Weinheim, 651. doi:10.1002/3527603581
  3. Hessel, V., Ehrfeld, W., Golbig, K., Haverkamp, V., Löwe, H., Storz, M., Wille, Ch., Guber, A. E., Jähnisch, K., Baerns, M. (2000). Gas / Liquid Microreactors for Direct Fluorination of Aromatic Compounds Using Elemental Fluorine. Microreaction Technology: Industrial Prospects. Springer Science + Business Media, 526–540. doi:10.1007/978-3-642-59738-1_55
  4. Hessel, V., Löwe, H. (2002, March). Mikroverfahrenstechnik: Komponenten – Anlagenkonzeption – Anwenderakzeptanz – Teil 2. Chemie Ingenieur Technik, Vol. 74, № 3, 185–207. doi:10.1002/1522-2640(200203)74:3<185::aid-cite185>3.0.co;2-7
  5. Herskowits, D., Herskowits, V., Stephan, K., Tamir, A. (1990, January). Characterization of a two-phase impinging jet absorber—II. Absorption with chemical reaction of CO2 in NaOH solutions. Chemical Engineering Science, Vol. 45, № 5, 1281–1287. doi:10.1016/0009-2509(90)87120-h
  6. Jähnisch, K., Hessel, V., Löwe, H., Baerns, M. (2004, January 16). Chemistry in Microstructured Reactors. Angewandte Chemie International Edition, Vol. 43, № 4, 406–446. doi:10.1002/anie.200300577
  7. Ehrfeld, W. (1995). DECHEMA-Monographs. Frankfurt: DECHEMA, 132.
  8. Krummradt, H., Koop, U., Stoldt, J. (2000). Experiences with the use of microreactors in organic synthesis. Microreaction Technology: Industrial Prospects. Springer Science + Business Media, 181–186. doi:10.1007/978-3-642-59738-1_17
  9. Borovinskaia, E. S. (2008). Matematicheskie modeli i kompleksy programm dlia issledovaniia i optimizatsii zhidkofaznykh reaktsii v mikroreaktorakh. Sankt-Peterburg, 190.
  10. Herwig, H. (2002, September). Flow and Heat Transfer in Micro Systems: Is Everything Different or Just Smaller? Journal of Applied Mathematics and Mechanics, Vol. 82, № 9, 579–586. doi:10.1002/1521-4001(200209)82:9<579::aid-zamm579>3.0.co;2-v
  11. Wörz, O., Jäckel, K.-P., Richter, T., Wolf, A. (2001, February). Microreactors – A New Efficient Tool for Reactor Development. Chemical Engineering & Technology, Vol. 24, № 2, 138-142. doi:10.1002/1521-4125(200102)24:2<138::aid-ceat138>3.0.co;2-c
  12. Wörz, O., Jäckel, K. P. (1997). Winzlingemitgroßer Zukunft-Mikroreaktoren fur die Chemie. Chem. Tech., Vol. 26, 130-134.
  13. Lerou, J. J.; In: Ehrfeld, W. (1996). Mycrosystem Technology for Chemical and Biological Microreactors. DECHEMA Monographs. VHC: Weinheim, Vol. 132, 51-69.
  14. Yarylin, R., Herbst A. (2012). Nepreryvnye protochnye mikroreaktory [Continuous flow microreactors]. Microreactors and nanotechnology, 44–49.
  15. Ehrfeld, W., Hessel, V., Löwe, H. (2000). Microreactors. New technology for modern chemistry. Weinheim: Wiley–VCH Verlag GmbH., 651. doi:10.1002/3527601953
  16. Ehrfeld, W., Hessel, V., Löwe, H. (1999). Encyclopedia of Industrial Chemistry. Weinheim: Wiley–VCH., 583.
  17. Schubert, K., Edrfeld, W., Rinard, I. H., Wegeng, R. S. (1998). Realization and testing of microstructure reactors. Micro heat exchangers and micromixers for industrial applications in chemical engineering. Proceeding of the conference on Process Minituarization: 2nd International Conference on Microreaction Technology, IMRET2, 88-95.
  18. Haidarov, V. G. (2013). Matematicheskoe modelirovanie rezhimov techenie potoka v mikrostrukturnykh sistemakh. Sankt-Peterburg, 125.
  19. Zhang, Z., Yim, C., Lin, M., Cao, X. (2008). Quantitative characterization of micromixing simulation. Biomicrofluidics, Vol. 2, № 3, 034104. doi:10.1063/1.2966454
  20. Radl, S., Suzzi, D., Khinast, J. G. (2010, November 3). Fast Reactions in Bubbly Flows: Film Model and Micromixing Effects. Industrial & Engineering Chemistry Research, Vol. 49, № 21, 10715–10729. doi:10.1021/ie100539g
  21. Vaccaro, S., Ciabelli, P. (2012). Results of modeling of a catalytic micro-reactor. 31st Meeting on Combustion, 1-6.

Published

2015-04-02

How to Cite

Мірошниченко, Ю. А., Безносик, Ю. О., & Бондаренко, О. С. (2015). Mathematical modeling of chemical reactions in microreactors. Technology Audit and Production Reserves, 2(5(22), 11–15. https://doi.org/10.15587/2312-8372.2015.41070

Issue

Section

Mathematical Modeling: Original Research