Research of Coriolis vibratory gyroscope tracking system for resonant frequency

Authors

  • Олена Миколаївна Безвесільна National Technical University of Ukraine «Kyiv Polytechnic Institute», 37, Avenue Peremogy, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6951-1242
  • Віктор Григорович Цірук National Technical University of Ukraine «Kyiv Polytechnic Institute», 37, Avenue Peremogy, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4674-9725
  • Андрій Геннадійович Ткачук Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, 10005, Ukraine https://orcid.org/0000-0003-2466-6299
  • Анастасія Олександрівна Просюк Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, 10005, Ukraine
  • Ніна Вікторівна Самсонова Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, 10005, Ukraine
  • Олександр Миколайович Хомяк Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, 10005, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2015.42745

Keywords:

Coriolis vibratory gyroscope, resonant frequency, angular velocity sensor

Abstract

In the article the new Coriolis vibratory gyroscope (CVG) that developed by PJSC «RPA «KAP n. a. G. Petrovsky» – the angular velocity sensor (AVS) of stability system of navigation complex of modern light armored vehicles. CVG is different from traditional electromechanical gyroscopes by high reliability and durability, as it contains no rotating parts, bandwidth and resistant to mechanical stress. These sensors have a broad scope, including – stabilization of the platform with measuring devices that standing on platforms and control systems of moving objects of different classes in measurement units for inertial navigation. Taking into account the results it is conducted the simulations of stabilizer operation with the introduction of AVS-CVG in the vertical channel of stabilizer, which are most intense effects. As the results of simulation, increase of bandwidth leads to better noise immunity system and ensures its rigidity requirements because reduces vibrations at very high gain ratio. An effective tracking system for CVG for resonant frequency is developed.

Author Biographies

Олена Миколаївна Безвесільна, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37, Avenue Peremogy, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Honored Worker of Science of Ukraine

Department of Instrumentation

Віктор Григорович Цірук, National Technical University of Ukraine «Kyiv Polytechnic Institute», 37, Avenue Peremogy, Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Doctoral student

Department of Instrumentation

Андрій Геннадійович Ткачук, Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, 10005

Candidate of Technical Sciences, Senior Lecturer

Department of automated process control and computer technologies

Анастасія Олександрівна Просюк, Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, 10005

Department of automated process control and computer technologies

Ніна Вікторівна Самсонова, Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, 10005

Department of automated process control and computer technologies

Олександр Миколайович Хомяк, Zhytomyr State Technological University, Chernyakhovskogo str., 103, Zhуtomуr, 10005

Department of automated process control and computer technologies

References

  1. Bezvesilna, O. M., Kyrychuk, Yu. V., Podchashynskyi, Yu. O. (2010). Metody optymizatsii tsilovoi funktsii ta identyfikatsii kharakterystyk pretsyziinykh navihatsiinykh system. Zhytomyr: ZhDTU, 200.
  2. Tsiruk, V. H., Bezvesilna, O. M., Kvasnikov, V. P., Chikovani, V. V. (2014). Systemy navedennia ta stabilizatsii ozbroiennia. Kyiv: NAU, 176.
  3. Tadano, S., Takeda, R., Miyagawa, H. (2013, July). Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations. Sensors, Vol. 13, № 7, 9321–9343. doi:10.3390/s130709321
  4. Bezvesilnaya, E. N., Tkachuk, A. H. (2014, July 3). Corrected gyrocompass synthesis as a system with changeable structure for aviation gravimetric system with piezoelectric gravimeter. Aviation, Vol. 18, № 3, 134–140. doi:10.3846/16487788.2014.969878
  5. Xia, D., Yu, C., Kong, L. (2014, January). The Development of Micromachined Gyroscope Structure and Circuitry Technology. Sensors, Vol. 14, № 1, 1394–1473. doi:10.3390/s140101394
  6. Singh, A. K. (2007, January 19). Piezoelectric Gyro Sensor Technology. Defence Science Journal, Vol. 57, № 1, 95–103. doi:10.14429/dsj.57.1735
  7. Shiratori, N., Hatakeyama, M., Okada, S. (1999, September 30). Temperature Characteristic Compensation of a Miniature Bi-Axial Gyro-Sensor Using a Disk-Type Resonator. Japanese Journal of Applied Physics, Vol. 38, Part 1, № 9B, 5586–5591. doi:10.1143/jjap.38.5586
  8. Donley, E. A. (2010, November). Nuclear magnetic resonance gyroscopes. Proceedings of the IEEE Sensors, Kona, HI, USA, 1–4 November 2010. IEEE, 17-22. doi:10.1109/icsens.2010.5690983
  9. Maliarov, S. P., Tsiruk, V. H., Nikolaienko, A. V. (25.04.2013). Tsyfrovyi koriolisivskyi vibratsiinyi hiroskop. Patent of Ukraine № 101747. Appl. 11.11.2011 № а 2011 13301; Bul. № 8. Available: http://uapatents.com/9-101747-cifrovijj-koriolisivskijj-vibracijjnijj-giroskop.html
  10. Maliarov, S. P., Tsiruk, V. H., Nikolaienko, A. V. (12.03.2012). Chutlyvyi element koriolisova vibratsiinoho hiroskopa. Patent of Ukraine № 97783. Appl. 31.08.2011 № а 2011 10539; Bul. № 5. Available: http://uapatents.com/8-97783-chutlivijj-element-koriolisova-vibracijjnogo-giroskopa.html

Published

2015-05-28

How to Cite

Безвесільна, О. М., Цірук, В. Г., Ткачук, А. Г., Просюк, А. О., Самсонова, Н. В., & Хомяк, О. М. (2015). Research of Coriolis vibratory gyroscope tracking system for resonant frequency. Technology Audit and Production Reserves, 3(2(23), 4–7. https://doi.org/10.15587/2312-8372.2015.42745