State estimation of energy saving on primary oil refining machines

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.52018

Keywords:

primary oil processing machine, economic impact, recuperative heat exchange

Abstract

The generalized description of the primary oil refining process at the electric desalting machine is made. The basic shortcomings of modern domestic thermal power plants in the primary oil refining are shown. Identification of the main places and causes of inefficient use of primary energy resources helps identify energy saving potential in manufacturing. It is determined that the economic effect tends to increase in the event of changes in the structure of heat exchange equipment, especially through the use of compressors in a closed technological cycle of heat recovery. Using recuperative heat exchange at the facility of primary oil processing makes it possible to solve the feasibility problem of saving primary energy resources. Reducing pressure temperature value between hot and cold process lines of primary oil refining machine to 20 % causes an increase in economic benefits by nearly 10 %. Modernization of existing schemes of primary oil processing machines can increase a depth of processing and energy saving potential in manufacturing.

Author Biography

Вікторія Ігорівна Кривда, Odessa National Polytechnic University, ave. Shevchenko, 1, Odessa, 65044

Candidate of Technical Science

Department of electrical and energy management

References

  1. Ulev, L. M., Nechyporenko, D. D. (2014). Pynch-yntehratsyia blokov hydroochystky syria y deеtanyzatsyy y stabylyzatsyy katalyzata na ustanovke L-35-11/600. Intehrovani tekhnolohii ta enerhozberezhennia, 4, 14–19.
  2. Smith, R., Zhang, N., Zhao, J. (2012). Hydrogen integration in petroleum refining. Chemical Engineering Transactions, 29, 1099–1104. doi:10.3303/CET1229184
  3. Hwang, J.-J. (2013, August). Thermal control and performance assessment of a proton exchanger membrane fuel cell generator. Applied Energy, 108, 184–193. doi:10.1016/j.apenergy.2013.03.025
  4. Özbek, M., Wang, S., Marx, M., Söffker, D. (2013, March). Modeling and control of a PEM fuel cell system: A practical study based on experimental defined component behavior. Journal of Process Control, Vol. 23, № 3, 282–293. doi:10.1016/j.jprocont.2012.11.009
  5. Zhao, H., Yu, J., Liu, J., Tahmasebi, A. (2015, June). Experimental study on the self-heating characteristics of Indonesian lignite during low temperature oxidation. Fuel, 150, 55–63. doi:10.1016/j.fuel.2015.01.108
  6. Olsson, L., Wetterlund, E., Söderström, M. (2015, March). Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat. Resources, Conservation and Recycling, 96, 31–39. doi:10.1016/j.resconrec.2015.01.006
  7. Ul'ev, L. M, Vasil'ev, M. A. (2014). Pinch-integratsiia protsessov pererabotki produktov koksovaniia na koksohimicheskom zavode. Іntegrovanі tehnologіі ta energozberezhennia, 4, 3–9.
  8. Maksimov, M. V., Krivda, V. І. (10.11.2014). Ustanovka atmosfernoі vakuumnoі trubchatki dlia pіdgotovki ta pervinnoі pererobki nafti. Patent of Ukraine 107027, MPK S10 G7/00. Appl. № a201303011. Filed 11.03.2013. Bull. № 21, 5.
  9. Maksimov, M. V., Krivda, V. І. (2011). Opredelenie minimal'nogo temperaturnogo napora mezhdu holodnymi i goriachimi potokami dlia rekuperativnyh teploobmennikov ELOU-AVT. Refrigeration engineering and technology, 3(131), 56–62.
  10. Liu, Y., Liu, L., Liang, L., Liu, X., Li, J. (2015, December). Thermodynamic optimization of the recuperative heat exchanger for Joule–Thomson cryocoolers using response surface methodology. International Journal of Refrigeration, 60, 155–165. doi:10.1016/j.ijrefrig.2015.07.034

Published

2015-09-22

How to Cite

Кривда, В. І. (2015). State estimation of energy saving on primary oil refining machines. Technology Audit and Production Reserves, 5(1(25), 39–43. https://doi.org/10.15587/2312-8372.2015.52018