Improving the structural schemes of optical dust measuring instruments

Authors

  • Дмитро Григорович Корнієнко National Technical University of Ukraine «Kyiv Polytechnic Institute», Ukraine, 03056, Kyiv-56, Victory Avenue, 37, Ukraine https://orcid.org/0000-0002-2683-2775

DOI:

https://doi.org/10.15587/2312-8372.2016.71766

Keywords:

dust, particle, dust measuring instrument, air, method, detector, measure instrument, optics, photometer, gravimetry

Abstract

This article describes the structural schemes of the next optical dust measuring instruments: single-channel, dual-channel, fixed, mobile, application features and specifications. The main aim of research is to improve the accuracy of measuring the dust concentration and reduce the measurement error due to the invariant schemes of construction of the optical dust measuring instruments.

Use of optical dust measuring instruments is important to monitor the protection of the environment, including health standards, certification of workplaces. It is cause of both periodic and continuous monitoring of the dust concentration with automatic dust measuring instruments that implement different methods of dust measurement in visibility on the operating conditions, operating mode, measuring range, requirements for speed and reliability.

The choice of structural construction of dust measuring instruments is proved depending on the range of dust concentration. Proposed Use of invariant schemes for construction of dust measuring instruments: gravimetric and optical with physical equivalents.

Author Biography

Дмитро Григорович Корнієнко, National Technical University of Ukraine «Kyiv Polytechnic Institute», Ukraine, 03056, Kyiv-56, Victory Avenue, 37

Graduate student

Department of scientific, analytical and ecological devices and systems

References

  1. Primisky, V., Ivasenko, V., Korniienko, D. (2014). Adaptation features and emission standards execution control in the industry. Eastern-European Journal Of Enterprise Technologies, 3(1(69)), 8–15. doi:10.15587/1729-4061.2014.24973
  2. Vartanov, A. S., Ruban, A. D., Shchkuratnik, V. L. (2009). Metody i pribory kontrolia okruzhaiushei sredy i ekologicheskii monitoring. Moscow: Mountain Book, 640.
  3. Klimenko, A. P. (1978). Metody i pribory dlia ismereniia kontsentratsii pyli. Moscow: Chemistry, 203.
  4. Baltrenas, P. B., Shchpakauskas, V. (1994). Metody i pribory opredeleniia fisiko-mehanicheskih svoistv pylei i aerosolei. Vilnius: Engineering, 237.
  5. Maksimenko, Yu. N., Masan, E. G., Timin, A. K. (2010). Perenosnoi opticheskii pylemer VOG-2. Visnyk NTUU «KPI». Seriia Pryladobuduvannia, 40, 81–86.
  6. Sampedro, Ó., Salgueiro, J. R. (2015, May). Turbidimeter and RGB sensor for remote measurements in an aquatic medium. Measurement, Vol. 68, 128–134. doi:10.1016/j.measurement.2015.02.049
  7. Mohd Khairi, M. T., Ibrahim, S., Md Yunus, M. A., Faramarzi, M. (2015, January 19). A review on the design and development of turbidimeter. Sensor Review, Vol. 35, № 1, 98–105. doi:10.1108/sr-01-2014-604
  8. Vovna, A. V. et al. (2012). Metody i sredstva analiticheskogo ismereniia kontsentratsii gasovyh komponent i pyli v rudnichnoi atmosfere ugol'nyh shchaht. Donetsk: SHEE «DonNTU», 260.
  9. Vovna, A., Sori, A., Hlamov, M. (2012). Metody i sredstva ismereniia kontsentratsii gasovyh komponent. Saarbrücken, Germany: LAP LAMBERT Academic Publishing GmbH & Co. KG, 244.
  10. Lychagin, D. V. (2014). Analis i vybor opticheskih shem dlia optiko-absobtsionnyh pylemerov. Prioritetnye nauchnye napravleniia ot teorii k praktike, 14, 134–136.
  11. Solomichev, R. I., Vovna, O. V., Zori, A. A. (2014). Rozrobka ta obgruntuvannia struktury vymiriuvalnoi systemy kontroliu vybukhonebezpechnykh pylo-hazovykh sumishei v shakhtnomu vyrobitku. Visnyk NTU «KhPI». Seriia «Elektroenerhetyka ta peretvoriuvalna tekhnika», 19 (1062), 154–163.
  12. Primisky, V., Poryev, V., Korniienko, D. (02.25.2016)., Method of measuring the concentration of dust in the smoke, toxic and radioactive gases industry. The application for the device: a201601772 G01N 15/02.
  13. Primisky, V. (02.25.2016). Method of measuring the concentration of dust in the flue gases. The application for the device: a201601797 G01N 15/02.
  14. Primisky, V., Poryev, V., Korniienko, D. (02.25.2016). Method of measuring the concentration of dust in the flue gases. The application for the device: a201601774 G01N 15/02.
  15. Primisky, V. (02.25.2016). Optical measuring dust. The application for the device: a201601796 G01N 15/02.

Published

2016-05-26

How to Cite

Корнієнко, Д. Г. (2016). Improving the structural schemes of optical dust measuring instruments. Technology Audit and Production Reserves, 3(2(29), 24–30. https://doi.org/10.15587/2312-8372.2016.71766