Development of simulation algorithm of biological parameters for operators of extreme activities using Monte Carlo method

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.79474

Keywords:

Monte Carlo method, electroencephalograph, biological parameters, integrated assessment

Abstract

Modern medicine is focused on the implementation of non-invasive diagnostic tools and methods of professional recruitment for operators of extreme activities on the basis of estimation and forecasting dysfunctions of the body. However, the specifics of biological data registration require significant expenditures of time and effort. For this purpose it is need to develop the modern computerized approaches to increase the efficiency of statistics for small time expenditures. Based on the statistics it can calculate normalized values of parameters on which basis professional recruitment of operators is implemented.

New tool cephaloencephalograph that is a combination of cephalograph and electroencephalograph is proposed to the collection of experimental data. Research of blood test parameters is proposed for further identification of cephaloencephalograph operation quality. This tool allows to obtain the parameters that characterize the work of information and energy fields of the human body that sensitive to current and forecasted physiological changes in the human body.

Iterative simulation using Monte Carlo method is applied to improve the calculation efficiency of normalized values of biological parameters used in the professional recruitment of operators. Among the advantages of the proposed approach of iterative modeling is implementation of robust method that can increase the quality of statistical parameters specified in the simulation for normal distribution law.

Normalized values of electroencephalography parameters, blood test for one of the types of operators in extreme activities, Antarctic winterers, are obtained as a result of experimental studies. Completed studies have shown that the proposed iterative simulation using Monte Carlo method allows narrow normalized parameters of biological parameters that increased efficiency of evaluation and prediction of psychophysical state of the operator’s body. Effectiveness of professional recruitment of operators increased by 20 % compared with similar approaches.

The research results can be used in the medical field of organ transplantation for donor selection or monitoring of the rehabilitation process after transplantation of internal organs.

Author Biographies

Вячеслав Данилович Кузовик, National Aviation University, ave. Komarova, 1, Kyiv, 03058

Doctor of Technical Sciences, Professor, Head of Department

Department of biocybernetics and aerospace medicine

Артем Дмитрович Гордєєв, National Aviation University, ave. Komarova, 1, Kyiv, 03058

Graduate student, Assistant

Department of biocybernetics and aerospace medicine

Микола Андрійович Назарчук, National Aviation University, ave. Komarova, 1, Kyiv, 03058

Graduate student

Department of biocybernetics and aerospace medicine

References

  1. Bodrov, V. A. (2006). Psihologiia professional'noi prigodnosti [Psychology of professional competence]. Moscow: PER SE, 511.
  2. Kyzovik, V., Gordieiev, A. (2016). Statistical processing of transient parameters in biorhythms of cortex. Technology Audit And Production Reserves, 4(2(30)), 59–64. doi:10.15587/2312-8372.2016.74649
  3. Fokin, V. A. (2007). Statisticheskoe modelirovanie dannyh pri otsenke sostoianiia biologicheskih sistem [Statistical data modeling when assessing the state of biological systems]. Bulletin of the Tomsk Polytechnic University, Vol. 311, № 5, 132–135.
  4. Pro skhvalennia Kontseptsii Derzhavnoi tsilovoi prohramy bezpeky polotiv na period do 2015 roku [On approval of the Concept of the State program of safety for the period until 2015]. Order of Cabinet of Ministers of Ukraine from 05.03.2009 № 273-p. Available: http://zakon3.rada.gov.ua/laws/show/273-2009-р
  5. Shvets, A. V. (2015). Informatsiina tekhnolohiia psykhofiziolohichnoho otsiniuvannia nadiinosti diialnosti ta pidtrymky pratsezdatnosti viiskovykh operatoriv [Information technology psychophysical evaluation of the reliability and efficiency of military support operators]. Kyiv, 47.
  6. Moiseienko, Ye. V., Sukhorukov, V. I., Madiar, S.-A. Y. et al. (2006). Psykhofiziolohichnyi suprovid antarktychnykh ekspedytsii [Physiological support of Antarctic expeditions]. Kyiv, 35.
  7. Weinberg, R. S., Gould, D. (1998). Foundations of Sport and Exercise Psychology With Web Study Guide. Translation from English. Kyiv: Olimpiiska literatura, 334.
  8. Volodarskyi, Ye. T., Bulyhina, O. V. (2012). Statystychne otsiniuvannia profesiinoi prydatnosti operatoriv ekstremalnykh vydiv diialnosti [Statistical evaluation of professional competence of operators extreme activities]. Informatsiini tekhnolohii ta kompiuterna inzheneriia, 3, 71–78.
  9. Kyzovik, V., Gordieiev, A. (2014). Hardware and software system for assessing operators’ psycho-physiological state. Technology Audit And Production Reserves, 1(5(15)), 44–46. doi:10.15587/2312-8372.2014.21740
  10. Kuzovyk, V. D., Bulygina, E. V., Gordeyev, A. D. (2013). Planning and implementation aspects of study of experimental psycho-physiological conditions of extreme activity operators. 2013 23rd Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2013), 9-13 September, Sevastopol, Crimea, Ukraine. Sevastopol: Veber, 1081–1082.
  11. Soboyejo, A. B. O., Nestor, K. E. (2001). A New Statistical Biomechanics Modeling of Physical and Biochemical Parameters of Bone Strength. Key Engineering Materials, Vol. 198–199, 261–290. doi:10.4028/www.scientific.net/kem.198-199.261
  12. Antoniouk, A. V., Melnik, R. V. N. (2013). Mathematics and Life Sciences. Berlin, Boston: De Gruyter, 316. doi:10.1515/9783110288537
  13. Ishemhuzhin, I. Ye., Atnahulov, A. R., Zotov, A. N., Ishemhuzhin, Ye. I. (2008). Spetsialni kryterii zghody dlia maloi vybirky pry otsintsi nadiinosti naftopromyslovoho obladnannia [Specific criteria for the approval of small sample size in assessing the reliability of oilfield equipment]. Naftohazova sprava, 1, 44.

Published

2016-09-29

How to Cite

Кузовик, В. Д., Гордєєв, А. Д., & Назарчук, М. А. (2016). Development of simulation algorithm of biological parameters for operators of extreme activities using Monte Carlo method. Technology Audit and Production Reserves, 5(1(31), 17–21. https://doi.org/10.15587/2312-8372.2016.79474