Analysis of the potential occurrence features in multicomponent ceramic composites based on the refractory anoxic compounds (part 1)

Authors

  • Владислав Владиславович Цигода National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6997-6384
  • Катерина Всеволодівна Кириленко National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-0353-8685
  • Віталій Ярославович Петровський National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-1544-4320

DOI:

https://doi.org/10.15587/2312-8372.2016.79874

Keywords:

binder, hafnium carbide, temperature, rubber, carboxymethylcellulose, concentration, morphology, microstructure

Abstract

Formation of the functional zone of multicomponent ceramic composite based on refractory anoxic compounds is the object of research. The disadvantages of this object in the existing operating conditions include high inertia, which shows that the produced functional devices do not affected by sudden changes in temperature peak.

Research was conducted at the Institute for Problems in Material Science of Ukraine using industrial powders. The investigated samples were produced by plastic forming on the spindle stall in the form of plates 100×7×6 mm. Carboxymethylcellulose (CMC) in combination with a plasticizer (glycerol or rubber) was used as a binder for this method. Investigated samples of silicon-nitride composites based on SIALONs were obtained by hot pressing of prepared ceramic tapes using the induction method of the mold heating.

Research was conducted by the methods: chemical analysis of raw materials and samples, X-ray analysis, electron microscopic analysis, X-ray spectral probe microanalysis and quantitative metallographic analysis of microstructure morphology of the ceramic composites.

It was established that the formation of functional areas nonlinear device affect technological factors such as: binder type, temperature, isothermal soaking temperature and composition of the gas environment. Reduction of the isothermal soaking temperature leads to increased non-uniformity of resistance by volume of the functional element with decreasing or exceeding the optimum soaking temperature. Binder, binder composition and gas temperature of the environment significantly affect the anisotropy and dimension of conducting of formed cluster. It is shown that microstructure morphology is formed differently for various binders. It is found that TCR passes through «0» for 13 % concentration of HfC.

These research results can be used to establish the correlation between process parameters, electrical conductivity and Seebeck coefficient of the solid layered multicomponent ceramic composites based on refractory anoxic compounds. Based on these studies it becomes possible to manufacture highly efficient thermoelectric converters.

Author Biographies

Владислав Владиславович Цигода, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056

PhD student

Department of Microelectronics

Катерина Всеволодівна Кириленко, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056

Assistant, Researcher

Department of Renewable Energy

Віталій Ярославович Петровський, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Prosp. Peremohy, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Microelectronics

References

  1. Tsygoda, V., Krystych, Yu., Petrovsky, V. (2015). Zastosuvannia termoelektrychnykh peretvoriuvachiv na osnovi tuhoplavkykh bezkysnevykh spoluk dlia vymiriuvannia temperatury ahresyvnykh seredovyshch. Keramika: nauka i zhizn', 1 (26), 4–20.
  2. Labensky, A., Kirilenko, E., Kurka, V., Petrovsky, V. (2011). Vliianie tehnologicheskih faktorov na termo-e.d.s. binarnyh sistem na osnove SiC i kompozitov Si3N4-B4C. Keramika: nauka i zhizn', 2 (12), 63–74.
  3. Smirnov, I., Molohov, E., Sulkowski, Cz., Misiorek, H., Jezowski A., de Arellano-Lopez, A., Martinez-Fernandez, J. (2008). Termo-e.d.s. bimorfnogo karbida kremniia. FTT, Vol. 50, № 8, 1355–1358.
  4. Gudaev, O., Malinovsky, V. (2002). Temperaturnaia zavisimost' termo-e.d.s. v poliarnyh nekristallicheskih materialah. FTT, Vol. 44, № 12, 1041–1045.
  5. Parfenov, O., Shkliaruk, F. (2007). O temperaturnoi zavisimosti termo-e.d.s. neuporiadochennyh poluprovodnikov. FTP, Vol. 41, № 9, 1041–1045.
  6. McLachlan, D. S., Blaszkiewicz, M., Newnham, R. E. (1990, August). Electrical Resistivity of Composites. Journal of the American Ceramic Society. Wiley-Blackwell, Vol. 73, № 8, 2187–2203. doi:10.1111/j.1151-2916.1990.tb07576.x
  7. Skorohod, V., Boitsov, O., Petrovsky, V.; In: Ranacjwski, J., Raabe, J., Petrovski, W. (1998). Matrichnost' struktury i razmernost' provodiashchego klastera v kompozite tipa izoliator-povodnik. Nowe kierunki technologii I badan materialowych. Warszava: ATOS, 540.
  8. Chen, I.-G., Johnson, W. B. (1992). Non-ohmic I–V behaviour of random metal-insulator composites near their percolation threshold. Journal of Materials Science, Vol. 27, № 20, 5497–5503. doi:10.1007/bf00541611
  9. Shimoni, N., Azulay, D., Balberg, I., Millo, O. (2002, March). Voltage Induced Electrical Connectivity on a Percolation Cluster. Physica Status Solidi (b), Vol. 230, № 1, 143–150. doi:10.1002/1521-3951(200203)230:1<143::aid-pssb143>3.0.co;2-7
  10. Toker, D., Azulay, D., Shimoni, N., Balberg, I., Millo, O. (2003, July 25). Tunneling and percolation in metal-insulator composite materials. Physical Review B, Vol. 68, № 4, 1–4. doi:10.1103/physrevb.68.041403
  11. Petrovsky, V. Y., Rak, Z. S. (2001, February). Densification, microstructure and properties of electroconductive Si3N4–TaN composites. Part I: Densification and microstructure. Journal of the European Ceramic Society, Vol. 21, № 2, 219–235. doi:10.1016/s0955-2219(00)00198-9
  12. Petrovsky, V. Y., Rak, Z. S. (2001, February). Densification, microstructure and properties of electroconductive Si3N4–TaN composites. Part II: Electrical and mechanical properties. Journal of the European Ceramic Society, Vol. 21, № 2, 237–244. doi:10.1016/s0955-2219(00)00199-0
  13. Tsygoda, V., Petrovsky, V. (2013). Formovanie keramicheskih lent aktivnyh sloev i obolochki sloistyh termopar metodom prokatki. Keramika: nauka i zhizn', 2 (20), 12–20.
  14. Petrovsky, V. Ya. (1999). Physique-technical basses and technological principles for manufacturing of functional gradient ceramic materials on the base of oxygen free refractory compounds. Kyiv: Institute for Problems of Materials Science NAS of Ukraine, 27.
  15. Samsonov, G. V. (1963). Tugoplavkie soedineniia. Moscow: Metallurgizdat, 400.
  16. Samsonov, G. V., Vinitsky, I. M. (1976). Tugoplavkie soedineniia. Ed. 2. Moscow: Metallurgiia, 560.
  17. Samsonov, G. V. et al. (1972). Elektronnyi spektr i fizicheskie svoistva diboridov titana, vanadiia i hroma. Izvestiia vuzov SSSR. Fizika, 6, 37–42.
  18. Popov, V. V., Gordeev, S. K., Grechinskaia, A. V., Danishevskii, A. M. (2002). Elektricheskie i termoelektricheskie svoistva nanoporistogo ugleroda. Fizika tverdogo tela, Vol. 44, 4. Available: http://journals.ioffe.ru/articles/viewPDF/39511
  19. Babichev, A. N., Babushkina, N. A., Bratkovsky, A. M. et al.; In: Grigoriev, I. S., Meilihov, E. Z. (1991). Fizicheskie velichiny. Moscow: Energoatomizdat, 1232.
  20. Parfen'eva, L. S., Smirnov, B. I., Smirnov, I. A., Wlosewicz, D., Misiorek, H., Sulkowski, Cz., Jezowski, A., de Arellano-Lopez, A. R., Martinez-Fernandez, J. (2009). Teploemkost' i koeffitsient termo-e.d.s. biouglerodnoi matritsy dereva sapeli. Fizika tverdogo tela, Vol. 51, 11. Available: http://journals.ioffe.ru/articles/viewPDF/3877
  21. Petrovsky, V. Ya., Skorohod, V. V. (1999). Fizicheskie printsipy i tehnologicheskie aspekty polucheniia gradientnyh kompozitov na osnove beskislorodnoi keramiki. Poroshkovaia metallurgiia, 3/4, 3–16.
  22. Gorelik, S. S., Rastorguev, L. N., Skakov, Yu. A. (1970). Rentgeno-fazovnyi i elektronno-opticheskii analiz. Prilozheniia. Moscow: Metallurgiia, 106.

Published

2016-09-29

How to Cite

Цигода, В. В., Кириленко, К. В., & Петровський, В. Я. (2016). Analysis of the potential occurrence features in multicomponent ceramic composites based on the refractory anoxic compounds (part 1). Technology Audit and Production Reserves, 5(1(31), 51–62. https://doi.org/10.15587/2312-8372.2016.79874