Conceptualization of research of power hybrid electric power complexes

Authors

DOI:

https://doi.org/10.15587/2312-8372.2016.81407

Keywords:

Hybrid Propulsion Complex, alternative energy source, photovoltaic element, battery, simulation

Abstract

The following disadvantages were revealed for hybrid diesel-electric propulsion complex (DEPC) under the influence of non-determined external disturbances: lack of coordination parameters of the medium-speed engines (MSE) with other components, leading to uneven regulation of magnetic flux and voltage amplitude, causing an additional increase of voltage pulsation in the output of converters and an emergence of equalization currents at synchronous operation; elevated levels of harmonics in the current of energy consumers; reduced reliability, efficiency, increased size and weight that occur through the use of high power elements and sets of equipment for them; no possibility of balancing three-phase system of power supply voltage with uneven loading of the phases.

The impact of some disadvantages of hybrid DEPC operation has been reduced due to the determination of the ways of their modernization and use of criteria for improving energy processes through the integration of appropriate criteria of management strategies in the power distribution system.

When using the classic PI control with adjustable level of ESS battery charge, power consumption by the consumers connected to the DC-link is decreased by 5 ÷ 7 % depending on the operating mode, and reactive power compensation is increased in the range of 2 ÷ 3 %. Control of frequency and MSE condition with adjustable degree of ESS battery charge for all other equal conditions allows to reduce the number or power of photovoltaic elements by 7 ÷ 10 % and management for criteria to obtain a maximum of alternative energy and control of the charge degree of ESS battery allows to use batteries of smaller capacity within 6 ÷ 8 %.

The proposed approach ensured optimization of power for PVGS, CPU and ESS diesel and generating units for hybrid DEPC that in the future will lead to minimize investment and operating costs.

Author Biographies

Vitaliy Budashko, National University «Odessa Maritime Academy», 8, Didrikhson str., Odessa, Ukraine, 65029

Ph.D., Associate Professor, Doctoral student

Тechnical fleet operation department

Oksana Glazeva, National University «Odessa Maritime Academy», 8, Didrikhson str., Odessa, Ukraine, 65029

Ph.D., Associate Professor

Ship’s electromechanics and electrical engineering department

Sergey Samonov, National University «Odessa Maritime Academy», 8, Didrikhson str., Odessa, Ukraine, 65029

Ph.D., Associate Professor

Ship’s electromechanics and electrical engineering department

References

  1. Livanosa, G. A., Theotokatos, G., Pagonis, D.-N. (2014, March). Techno-economic investigation of alternative propulsion plants for Ferries and RoRo ships. Energy Conversion and Management, Vol. 79, 640–651. doi:10.1016/j.enconman.2013.12.050
  2. Abdin, Z., Webb, C. J., Gray, E. M. (2015). Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review. Renewable and Sustainable Energy Reviews, Vol. 52, 1791–1808. doi:10.1016/j.rser.2015.08.011
  3. Matthé, R., Eberle, U. (2014). The Voltec System – Energy Storage and Electric Propulsion. Lithium-Ion Batteries, 151–176. doi:10.1016/b978-0-444-59513-3.00008-x
  4. Bajec, P., Pevec, B., Miljavec, D. (2010, June). Optimal control of brushless PM motor in parallel hybrid propulsion system. Mechatronics, Vol. 20, № 4, 464–473. doi:10.1016/j.mechatronics.2010.04.004
  5. Mander, S. (2016). Slow steaming and a new dawn for wind propulsion: A multi-level analysis of two low carbon shipping transitions. Marine Policy. Available: https://doi.org/10.1016/j.marpol.2016.03.018
  6. Johnson, H., Styhre, L. (2015, January). Increased energy efficiency in short sea shipping through decreased time in port. Transportation Research Part A: Policy and Practice, Vol. 71, 167–178. doi:10.1016/j.tra.2014.11.008
  7. Johnson, H., Johansson, M., Andersson, K. (2014, March). Barriers to improving energy efficiency in short sea shipping: an action research case study. Journal of Cleaner Production, Vol. 66, 317–327. doi:10.1016/j.jclepro.2013.10.046
  8. Wilflinger, J., Ortner, P., del Re, L., Aschaber, M. (2010, September). Simulation and control design of hybrid propulsions in boats. IFAC Proceedings Volumes, Vol. 43, № 20, 40–45. doi:10.3182/20100915-3-de-3008.00001
  9. Choi, C. H., Yu, S., Han, I.-S., Kho, B.-K., Kang, D.-G., Lee, H. Y. et al. (2016, February). Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. International Journal of Hydrogen Energy, Vol. 41, № 5, 3591–3599. doi:10.1016/j.ijhydene.2015.12.186
  10. de-Troya, J. J., Alvarez, C., Fernandez-Garrido, C., Carral, L. (2016, January). Analysing the possibilities of using fuel cells in ships. International Journal of Hydrogen Energy, Vol. 41, № 4, 2853–2866. doi:10.1016/j.ijhydene.2015.11.145
  11. Zahedi, B., Norum, L. E., Ludvigsen, K. B. (2014, June). Optimized efficiency of all-electric ships by dc hybrid power systems. Journal of Power Sources, Vol. 255, 341–354. doi:10.1016/j.jpowsour.2014.01.031
  12. Yan, R., Saha, T. K., Modi, N., Masood, N.-A., Mosadeghy, M. (2015, May). The combined effects of high penetration of wind and PV on power system frequency response. Applied Energy, Vol. 145, 320–330. doi:10.1016/j.apenergy.2015.02.044
  13. Balcombe, P., Rigby, D., Azapagic, A. (2015, February). Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage. Applied Energy, Vol. 139, 245–259. doi:10.1016/j.apenergy.2014.11.034
  14. Cho, J., Kleit, A. N. (2015, June). Energy storage systems in energy and ancillary markets: A backwards induction approach. Applied Energy, Vol. 147, 176–183. doi:10.1016/j.apenergy.2015.01.114
  15. Zhao, H., Wu, Q., Hu, S., Xu, H., Rasmussen, C. N. (2015, January). Review of energy storage system for wind power integration support. Applied Energy, Vol. 137, 545–553. doi:10.1016/j.apenergy.2014.04.103
  16. Allan, G., Eromenko, I., Gilmartin, M., Kockar, I., McGregor, P. (2015, February). The economics of distributed energy generation: A literature review. Renewable and Sustainable Energy Reviews, Vol. 42, 543–556. doi:10.1016/j.rser.2014.07.064
  17. Arifujjaman, M. (2015, February). A comprehensive power loss, efficiency, reliability and cost calculation of a 1 MW/500 kWh battery based energy storage system for frequency regulation application. Renewable Energy, Vol. 74, 158–169. doi:10.1016/j.renene.2014.07.046
  18. Zhao, P., Wang, J., Dai, Y. (2015, March). Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level. Renewable Energy, Vol. 75, 541–549. doi:10.1016/j.renene.2014.10.040
  19. Zakeri, B., Syri, S. (2015, February). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, Vol. 42, 569–596. doi:10.1016/j.rser.2014.10.011
  20. Chen, C., Duan, S., Cai, T., Liu, B., Hu, G. (2011, October). Optimal Allocation and Economic Analysis of Energy Storage System in Microgrids. IEEE Transactions on Power Electronics, Vol. 26, № 10, 2762–2773. doi:10.1109/TPEL.2011.2116808
  21. Bigdeli, N. (2015, February). Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches. Renewable and Sustainable Energy Reviews, Vol. 42, 377–393. doi:10.1016/j.rser.2014.10.032
  22. Kurzweil, P. (2015). Post-lithium-ion battery chemistries for hybrid electric vehicles and battery electric vehicles. Advances in Battery Technologies for Electric Vehicles, 127–172. doi:10.1016/B978-1-78242-377-5.00007-8
  23. Dedes, E. K., Hudson, D. A., Turnock, S. R. (2012, January). Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping. Energy Policy, Vol. 40, 204–218. doi:10.1016/j.enpol.2011.09.046
  24. Wang, L., Lee, D.-J., Lee, W.-J., Chen, Z. (2008, December). Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link. Journal of Power Sources, Vol. 185, 1284–1292. doi:10.1016/j.jpowsour.2008.08.037
  25. Bal Besikci, E., Arslan, O., Turan, O., Olcer, A. I. (2016, February). An artificial neural network based decision support system for energy efficient ship operations. Computers & Operations Research, Vol. 66, 393–401. doi:10.1016/j.cor.2015.04.004
  26. Maleki, A., Askarzadeh, A. (2014, September). Artificial bee swarm optimization for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept. Solar Energy, Vol. 107, 227–235. doi:10.1016/j.solener.2014.05.016
  27. Maleki, A., Askarzadeh, A. (2014, September). Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustainable Energy Technologies and Assessments, Vol. 7, 147–153. doi:10.1016/j.seta.2014.04.005
  28. Nelson, D. B., Nehrir, M. H., Wang, C. (2006, August). Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renewable Energy, Vol. 31, № 10, 1641–1656. doi:10.1016/j.renene.2005.08.031
  29. Budashko, V. V., Onyshchenko, O. A. (2014). Udoskonalennia systemy upravlinnia pidruliuiuchym prystroiem kombinovanoho propulsyvnoho kompleksu [Improving management system combined thruster propulsion systems]. Bulletin of NTU «KhPI». Thematic edition «Electric Machines and Electromechanical Energy Conversion», 38 (1081), 45–51.
  30. Rezzouk, H., Mellit, A. (2015, March). Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria. Renewable and Sustainable Energy Reviews, Vol. 43, 1134–1150. doi:10.1016/j.rser.2014.11.103
  31. Ramli, M. A. M., Hiendro, A., Twaha, S. (2015, June). Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renewable Energy, Vol. 78, 398–405. doi:10.1016/j.renene.2015.01.026
  32. Maheri, A. (2014, June). Multi-objective design optimisation of standalone hybrid wind-PV-diesel systems under uncertainties. Renewable Energy, Vol. 66, 650–661. doi:10.1016/j.renene.2014.01.009
  33. Zhao, B., Zhang, X., Li, P., Wang, K., Xue, M., Wang, C. (2014, January). Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Applied Energy, Vol. 113, 1656–1666. doi:10.1016/j.apenergy.2013.09.015
  34. Glykas, A., Papaioannou, G., Perissakis, S. (2010, May). Application and cost–benefit analysis of solar hybrid power installation on merchant marine vessels. Ocean Engineering, Vol. 37, № 7, 592–602. doi:10.1016/j.oceaneng.2010.01.019
  35. Lee, K. J., Shin, D. S., Lee, J. P., Yoo, D. W., Choi, H. K., Kim, H. J. (2012). Hybrid photovoltaic/diesel green ship operating in standalone and grid-connected mode in South Korea– Experimental investigation. 2012 IEEE Vehicle Power and Propulsion Conference (VPPC), Vol. 49, 580–583. doi:10.1109/VPPC.2012.6422691
  36. Adamo, F., Andria, G., Cavone, G., De Capua, C., Lanzolla, A. M. L., Morello, R., Spadavecchia, M. (2014, January). Estimation of ship emissions in the port of Taranto. Measurement, Vol. 47, 982–988. doi:10.1016/j.measurement.2013.09.012
  37. Jeyaprabha, S. B., Selvakumar, A. I. (2015, June). Optimal sizing of photovoltaic/battery/diesel based hybrid system and optimal tilting of solar array using the artificial intelligence for remote houses in India. Energy and Buildings, Vol. 96, 40–52. doi:10.1016/j.enbuild.2015.03.012
  38. Rezaie, B., Esmailzadeh, E., Dincer, I. (2011, January). Renewable energy options for buildings: Case studies. Energy and Buildings, Vol. 43, № 1, 56–65. doi:10.1016/j.enbuild.2010.08.013
  39. Diaf, S., Notton, G., Belhamel, M., Haddadi, M., Louche, A. (2008, October). Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy, Vol. 85, № 10, 968–987. doi:10.1016/j.apenergy.2008.02.012
  40. Sharafi, M., ELMekkawy, T. Y. (2014, August). Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renewable Energy, Vol. 68, 67–79. doi:10.1016/j.renene.2014.01.011
  41. Lujano-Rojas, J. M., Dufo-Lopez, R., Bernal-Agustin, J. L. (2013, December). Probabilistic modelling and analysis of stand-alone hybrid power systems. Energy, Vol. 63, 19–27. doi:10.1016/j.energy.2013.10.003
  42. Yoshida, S., Ueno, S., Kataoka, N., Takakura, H., Minemoto, T. (2013, July). Estimation of global tilted irradiance and output energy using meteorological data and performance of photovoltaic modules. Solar Energy, Vol. 93, 90–99. doi:10.1016/j.solener.2013.04.001
  43. Ovrum, E., Bergh, T. F. (2015, August). Modelling lithium-ion battery hybrid ship crane operation. Applied Energy, Vol. 152, 162–172. doi:10.1016/j.apenergy.2015.01.066
  44. Diab, F., Lan, H., Ali, S. (2016, September). Novel comparison study between the hybrid renewable energy systems on land and on ship. Renewable and Sustainable Energy Reviews, Vol. 63, 452–463. doi:10.1016/j.rser.2016.05.053
  45. Li, C.-Z. (2006, November). Fundamentals of Renewable Energy Processes. Process Safety and Environmental Protection, Vol. 84, № 6, 476. doi:10.1205/psep.br.0606
  46. Zhao, J., Rao, Z., Li, Y. (2015, October). Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management, Vol. 103, 157–165. doi:10.1016/j.enconman.2015.06.056
  47. Ordonez, J., Gago, E. J., Girard, A. (2016, July). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, Vol. 60, 195–205. doi:10.1016/j.rser.2015.12.363
  48. Wang, Q., Jiang, B., Li, B., Yan, Y. (2016, October). A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable and Sustainable Energy Reviews, Vol. 64, 106–128. doi:10.1016/j.rser.2016.05.033
  49. Zhou, Y., Huang, M., Chen, Y., Tao, Y. (2016, July). A novel health indicator for on-line lithium-ion batteries remaining useful life prediction. Journal of Power Sources, Vol. 321, 1–10. doi:10.1016/j.jpowsour.2016.04.119
  50. Hassan, S. R., Zakaria, M., Arshad, M. R., Aziz, Z. A. (2012). Evaluation of Propulsion System Used in URRG-Autonomous Surface Vessel (ASV). Procedia Engineering, Vol. 41, 607–613. doi:10.1016/j.proeng.2012.07.219
  51. Delucchi, M. A., Jacobson, M. Z. (2011, March). Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy, Vol. 39, № 3, 1170–1190. doi:10.1016/j.enpol.2010.11.045
  52. Ketsingsoi, S., Kumsuwan, Y. (2014). An Off-line Battery Charger based on Buck-boost Power Factor Correction Converter for Plug-in Electric Vehicles. Energy Procedia, Vol. 56, 659–666. doi:10.1016/j.egypro.2014.07.205
  53. Yang, N., Zhang, X., Shang, B., Li, G. (2016, February). Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination. Journal of Power Sources, Vol. 306, 733–741. doi:10.1016/j.jpowsour.2015.12.079
  54. Budashko, V. V., Onishchenko, O. A. (2014). Mathematical principles of simulation of power plant’s control system at drillship. Bulletin оf Kamchatka State Technical University, Vol. 29, 6–13. Available: http://elibrary.ru/item.asp?id=22822710
  55. Hlazeva, O. V., Budashko, V. V. (2015). Aspects of the mathematical modelling of the elements for Western Systems Coordinating Council of combined propulsion complexes. Bulletin of NTU «KhPI». Thematic edition «Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice», 42 (1151), 71–75. Available: http://pema.khpi.edu.ua/index.php/2079–3944/article/view/55969
  56. Budashko, V. (2015). Implementation approaches during simulation of energy processes for a dynamically positioned ship. Electrical Engineering & Electromechanics, 6, 14-19. Available: http://eie.khpi.edu.ua/article/view/2074-272X.2015.6.02
  57. Motapon, S. N., Dessaint, L.-A., Al-Haddad, K. (2014, March). A Comparative Study of Energy Management Schemes for a Fuel-Cell Hybrid Emergency Power System of More-Electric Aircraft. IEEE Transactions on Industrial Electronics, Vol. 61, № 3, 1320–1334. doi:10.1109/TIE.2013.2257152
  58. Budashko, V., Nikolskyi, V., Onishchenko, O., Khniunin, S. (2015). Physical model of degradation effect by interaction azimuthal flow with hull of ship. Proceeding Book of International Conference on Engine Room Simulators (ICERS12). Istanbul:IstanbulTechnicalUniversity, Maritime Faculty, 49–53. ISBN 978-605-01-0782-1.
  59. Nikolskyi, V., Budashko, V., Khniunin, S. (2015). The monitoring system of the Coanda effect for the tension-leg platform’s. Proceeding Book of International Conference on Engine Room Simulators (ICERS12). Istanbul:IstanbulTechnicalUniversity, Maritime Faculty, 45–49. ISBN 978-605-01-0782-1.
  60. Budashko, V. V., Nikolskyi, V. V., Khniunin, S. H.; assignee: Odesa National Maritime Academy, Budashko, V. V., Nikolskyi, V. V., Khniunin, S. H. (10.08.2015). Ship monitoring system for the prevention of Coanda effect. Patent of Ukraine № 100819. Appl. № u201501854. Filed 02.03.2015. Bull. № 15. Available: http://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=215069&chapter=biblio
  61. Budashko, V., Onischenko, O., Yushkov, E. (2014). Physical Modeling of Multi-Propulsion Complex. Zbirnyk naukovykh prats Viiskovoi akademii (m. Odesa), Tekhnichni nauky, 2, 88–92. Available: http://zbirnyk.vaodessa.org.ua/images/zbirnyk_2/13.PDF

Downloads

Published

2016-09-29

How to Cite

Budashko, V., Glazeva, O., & Samonov, S. (2016). Conceptualization of research of power hybrid electric power complexes. Technology Audit and Production Reserves, 5(1(31), 63–73. https://doi.org/10.15587/2312-8372.2016.81407