Investigation of the current state of isostatic graphite production technology

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.98125

Keywords:

isostatic graphite, isostatic pressing, photogalvanic industry, heat-resistant material, coke-pitch composition

Abstract

The study of isostatic graphite production process and its development trends in the world market was conducted.

It was established that the isostatic graphite production is a complex and multistage process that requires careful preparation of raw materials, the usage of powerful specialized pressing equipment, the use of elaborate heat treatment modes etc. As a result, it creates a high final price comparing to other brands of graphite materials.

Methods of synthesis, analysis and systematization of available information regarding the isostatic graphite production were used for the study.

The peculiarities of foreign isostatic graphite production technology were determined, which allows to set directions of improvement by Ukrainian producers, namely:

-     choice of components and their composition for coke and pitch mixture;

-     adding special modifiers;

-     optimization of particle size distribution of the filler;

-     setting the pressure for pressing moulding powder;

-     choice of modes of blanks thermal processing etc.

The level of future growth in global demand is determined for isostatic graphite materials and products based on it, which is more than 5 % of the annual global volume of production.

The results enable further research in order to develop equipment and rational modes of grinding, mixing and pressing coke-pitch compositions using available Ukrainian brand coke and pitch. Furthermore, it will allow in the future to conduct a study of pressed billets heat treatment to reduce the unit cost of electricity and improve the process of isostatic graphite material manufacturing.

Author Biographies

Anton Karvatskii, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Chemical, Polymer and Silicate Engineering

Serhii Leleka, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056

PhD, Researcher

ScientificResearchCenter«Resource-Saving Technologies»

Taras Lazarev, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056

PhD, Researcher

ScientificResearchCenter«Resource-Saving Technologies»

Anatolii Pedchenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremogy ave., 37, Kyiv, Ukraine, 03056

Research Fellow

ScientificResearchCenter«Resource-Saving Technologies»

References

  1. Kostikov, V. I., Samoilov, V. M., Beilina, N. Yu., Ostronov, B. G. (2004). Novye vysokoprochnye uglerodnye materialy dlia vysokih tehnologii. Rossiiskii himicheskii zhurnal, XLVIII (5), 64–75.
  2. Ranjan, R., Donald, W. S.; assignee: Santoku America, Inc. (05.10.2004). Castings of metallic alloys with improved surface quality, structural integrity and mechanical properties fabricated in finegrained isotropic graphite molds under vacuum. Patent US 6799626 B2, Int. Cl.7 B22C 9/00, B22C 3/00. Appl. No. 10/143,920. Filed 14.03.2002. 36.
  3. Global Isostatic Graphite Market 2015 Industry Trends, Analysis & Forecast to 2020. (2015). Florida: QY Research, 153.
  4. Inagaki, M., Kang, F., Toyoda, M., Konno, H. (2014). Advanced Materials Science and Engineering of Carbon. Oxford: Butterworth-Heinemann, 440. doi:10.1016/c2012-0-03601-0
  5. Eliseev, Yu. S., Poklad, V. A., Shutov, A. N., Vasilev, Yu. N., Sankin, A. E.; assignee: JSC «GTERPC «SALUT». (20.05.2005). Sposob polucheniia grafitirovannogo materiala. Patent RU 2252190 C1, MPK7 C 01 B 31/02, S 04 B 35/52. Appl. No. 2004107239/15. Filed 12.03.2004. Bull. № 14, 6.
  6. Sviridov, A. A., Seleznev, A. N., Podkopaev, S. A., Gnedin, Yu. F., Sherriuble, V. G., Sherriuble, V. G.; assignee: «Chelyabinsk Electrode Plant» OJSC. (27.02.2005). Sposob polucheniia vysokoplotnyh melkozernistyh uglegrafitovyh materialov. Patent RU 2256610 C2, MPK7 C 01 B 31/04, S 04 B 35/52. Appl. No. 2003116383/15. Filed 04.06.2003. Bull. № 20, 5.
  7. Beilina, N. Yu., Lipkina, N. V., Petrov, A. V., Roshchina, A. A., Starichenko, N. S.; assignee: State Research Institute of Structural Materials Based on Graphite «NIgrafit». (20.07.2010). Nanostrukturirovannyi kamennougol'nyi pek i sposob ego polucheniia. Patent RU 2394870 C1, MPK (2006.01) C10C 3/10, B82B 1/00. Appl. No. 2008148549/04. Filed 10.12.2008. Bull. № 20, 8.
  8. Klimenko, A. A., Morozov, S. M., Filippova, L. I. (27.07.2013). Sposob izgotovleniia zagotovok iz melkozernistogo grafita. Patent RU 2488554 C2, MPK (2006.01) C01B 31/04, S 04 B 35/52. Appl. No. 2011142450/05. Filed 21.10.2011. Bull. № 21, 8.
  9. Lavrenov, A. A., Fokin, V. P.; assignee: LLC «Doncarb Graphite». (20.09.2013). Sposob polucheniia zagotovok iz melkozernistogo grafita. Patent RU 2493098 C1, MPK (2006.01) C01B 31/04, B82B 3/00, (2011.01) B82Y 30/00. Appl. No. 2012100051/05. Filed 11.01.2012. Bull. № 26, 11.
  10. Nonishneva, N. P., Frolov, A. V. (2015). Issledovaniia v oblasti razrabotki otechestvennoi tehnologii polucheniia izostaticheskogo grafita. Proceedings of the 67th Scientific Conference. Nauka YuUrGU. Sektsii estestvennyh nauk. Cheliabinsk: Izdatelskii tsentr YuUrGU, 364–368.
  11. Asao, O.; In: Marsh, H., Heintz, E. A., Rodriques-Reinoso, F. (1997). High density isotropic graphites and glassy carbons. Japanese situation: production, рroperties and applicaitions. Alicante: Universidad de Alicante. Secretariado de Publicationes, 564.
  12. Randall, T. (13.06.2016). The world nears peak fossil fuels for electricity. Available: https://www.bloomberg.com/news/articles/2016-06-13/we-ve-almost-reached-peak-fossil-fuels-for-electricity. Last accessed: 01.02.2017.
  13. Freik, D. M., Chobanyuk, V. M., Galuschak, M. O., Krunutcky, O. S., Mateik, G. D. (2012). Photovoltaic Converters of Solar Radiation. Achievements, Current Status and Trends (Review). Physics and Chemistry of Solid State, 13 (1), 7–20.
  14. Hoffmann, W. R., Hüttinger, K. J. (1994). Sintering of powders of polyaromatic mesophase to high-strength isotropic carbons – I. Influence of the raw material and sintering conditions on the properties of the carbon materials. Carbon, 32 (6), 1087–1103. doi:10.1016/0008-6223(94)90218-6
  15. Samoilov, V. M., Streletskii, A. N. (2004). Vliianie sverhtonkogo izmel'cheniia na kristallicheskuiu strukturu i grafitiruemost' tonkodispersnyh uglerodnyh napolnitelei. Himiia tverdogo topliva, 2, 53–59.
  16. Samoilov, V. M.; State Research Institute of Structural Materials Based on Graphite «NIgrafit». (2006). Poluchenie tonkodispersnyh uglerodnyh napolnitelei i razrabotka tehnologii proizvodstva tonkozernistyh grafitov na ih osnove. Moscow, 56.
  17. Timoshchuk, E. V., Samoilov, V. M., Timoshchuk, E. I., Smirnov, V. K. (2011). Vliianie dlitel'nosti sovmestnogo vibroizmel'cheniia i davleniia pressovaniia na plotnosti i usadki zagotovok grafita. Himiia tverdogo topliva, 1, 60–64.
  18. Chard, W., Conaway, M., Niesz, D. (1976). Advanced High Pressure Graphite Processing Technology. Petroleum Derived Carbons, 21, 155–171. doi:10.1021/bk-1976-0021.ch014
  19. Timoshchuk, E. I., Samoilov, V. M., Lyapunov, A. Ya., Balaklienko, Yu. M., Borunova, A. B. (2012). Determination of the Particle Size of Fine Powders of the Artificial Graphite by Laser Diffraction. Industrial laboratory. Materials diagnostics, 78 (11), 25–28.
  20. Samoilov, V. M. (2010). Udel'naia poverhnost', razmery i forma chastits tonkodispersnyh uglerodnyh napolnitelei. Neorganicheskie materialy, 46 (8), 913–918.
  21. Ucar isostatic molded graphite. MatWeb. Available: http://www.matweb.com/search/QuickText.aspx?SearchText=UCAR%20Isostatic%20Molded%20Graphite. Last accessed: 01.02.2017.
  22. Technical Data Sheets: SIGRAFINE Isostatic Graphite. SGL Group – The Carbon Company. Available: https://www.sglgroup.com/cms/international/infokorb/Downloadcenter/products/fgg/technical-data-sheets/iso/index.html. Last accessed: 01.02.2017.
  23. Main graphite grades. MERSEN. Available: https://www.mersen.com/fileadmin/user_upload/pdf/ht/19-graphite-grades-mersen.pdf. Last accessed: 01.02.2017.
  24. Special Graphite (Isostatic Graphite). TOYO TANSO. Available: http://www.toyotanso.com/Products/Special_graphite/data.html. Last accessed: 01.02.2017.
  25. Property Data. IBIDEN Fine Graphite Material. Available: https://www.fgm.ibiden.co.jp/multilanguage/english/list.html. Last accessed: 01.02.2017.
  26. Butyrin, G. M. (2015). Plotnost', poristaia struktura i gazodinamicheskie harakteristiki tonkozernistyh grafitov (obzor). Himiia tverdogo topliva, 5, 40–53.
  27. Tracy, L. A., Doug, J. M. (2007). The characterization of highly crystalline, isotropic graphite. Carbon 2007 Conference, 15–20 July 2007, Seattle, Washington, USA. Available: http://acs.omnibooksonline.com/data/papers/2007_D021.pdf
  28. Lgalov, V. V., Tokarev, A. M. (2015). Izuchenie ekspluatatsionnoi stoikosti detalei iz iskusstvennogo grafita pri izgotovlenii metallostekliannyh soedinenii. Proceedings of the V All-Russian Scientific Conference with International Participation. Zhiznennyi tsikl konstruktsionnyh materialov. Irkutsk, 56–64.
  29. Dodoo-Arhin, D., Howe, R. C. T., Hu, G., Zhang, Y., Hiralal, P., Bello, A. et al. (2016). Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon, 105, 33–41. doi:10.1016/j.carbon.2016.04.012
  30. Liu, Z., You, P., Xie, C., Tang, G., Yan, F. (2016). Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 28, 151–157. doi:10.1016/j.nanoen.2016.08.038

Published

2017-03-30

How to Cite

Karvatskii, A., Leleka, S., Lazarev, T., & Pedchenko, A. (2017). Investigation of the current state of isostatic graphite production technology. Technology Audit and Production Reserves, 2(1(34), 16–21. https://doi.org/10.15587/2312-8372.2017.98125

Issue

Section

Materials Science: Original Research