Одержання ферумвмісних силікатних композитів для очищення забруднених вод від сполук арсену
DOI:
https://doi.org/10.15587/2312-8372.2019.173710Ключові слова:
сорбція арсену, очищення води, оксигідроксиди заліза, глинисті мінерали, модифікування поверхніАнотація
Об'єктом дослідження є палигорськіт – природний глинистий мінерал шарувато-стрічкової структури. Для нього характерною є висока питома поверхня, вторинна поруватість та сорбційна здатність щодо катіонів металів. Проте, за рахунок негативного заряду поверхні, палигорськіт є неефективним при очищенні вод від забруднення, що знаходяться в аніонній формі, зокрема, від сполук арсену. Суттєвим недоліком використання дисперсних алюмосилікатів в якості сорбентів є складність їх відділення від рідкої фази після процесу сорбційного очищення. Тому авторами для підвищення сорбційних властивостей палигорськіту щодо забруднювачів, які знаходяться у водному середовищі в формі аніонів, було використано метод модифікування його поверхні ферумвмісними сполуками, що включає в себе обробку підготовленого палигорськіту солями заліза(ІІІ) в слабко лужному середовищі. В роботі використовувалися фізико-хімічні методи дослідження структури модифікованих та вихідних зразків палигорськіту, зокрема, метод інфрачервоної спектроскопії (ІЧ-спектроскопії) та метод низькотемпературної адсорбції-десорбції азоту. Отримані результати вказують на те, що поверхня палигорськіту вкрита сполуками заліза(ІІІ), що привело до підвищення питомої поверхні з 213 м2/г до 275 м2/г та розміру пор з 1,9 нм до 2,25 нм. Одержані зразки відрізняються від вихідного мінералу підвищеною сорбційною здатністю по відношенню до сполук арсену(V). Величина максимальної сорбції арсену модифікованим зразком становить 7,8 мг/г, що значно перевищує таку для природного палигорськіту – 0,2 мг/г. Показано, що вилучення арсену ферумвмісним силікатом відбувається достатньо швидко і не залежить від величини рН водного середовища в діапазоні 3–8. Це пов’язано з тим, що при обробці поверхні палигорськіту оксигідроксидами заліза, останній набуває підвищеної реакційної здатності за рахунок збільшення кількості активних сорбційних центрів.
Посилання
- Environmental Health Criteria 224 Arsenic and Arsenic Compounds (2011). Geneva: World Health Organization, 521.
- Linnik, P. N. (2015). Myshiak v prirodnykh vodakh: formy nakhozhdeniia, osobennosti migratsii, toksichnost (obzor). Gidrobiologicheskii zhurnal, 51 (4), 91–116.
- Tarasevich, Iu. I. (1981). Prirodnye sorbenty v protsessakh ochistki vody. Kyiv: Naukova dumka, 208.
- Nicomel, N., Leus, K., Folens, K., Van Der Voort, P., Du Laing, G. (2015). Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health, 13 (1), 62. doi: http://doi.org/10.3390/ijerph13010062
- Ctrelko, V. V., Chubar, N. I. (2000). Myshiak i osnovnye metody ego udaleniia pri vodopodgotovke. Khimiia i tekhnologiia vody, 22 (1), 74–90.
- Awual, M. R., Hossain, M. A., Shenashen, M. A., Yaita, T., Suzuki, S., Jyo, A. (2012). Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environmental Science and Pollution Research, 20 (1), 421–430. doi: http://doi.org/10.1007/s11356-012-0936-7
- Mohan, D., Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials, 142 (1-2), 1–53. doi: http://doi.org/10.1016/j.jhazmat.2007.01.006
- Verma, P., Agarwal, A., Singh, V. K. (2014). Arsenic removal from water through adsorption – A Rewiew. Recent Research in Science and Technology, 6 (1), 219–226.
- Pena, M. E., Korfiatis, G. P., Patel, M., Lippincott, L., Meng, X. (2005). Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Research, 39 (11), 2327–2337. doi: http://doi.org/10.1016/j.watres.2005.04.006
- Hristovski, K. D., Westerhoff, P. K., Crittenden, J. C., Olson, L. W. (2008). Arsenate Removal by Nanostructured ZrO2Spheres. Environmental Science & Technology, 42 (10), 3786–3790. doi: http://doi.org/10.1021/es702952p
- Martinson, C. A., Reddy, K. J. (2009). Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 336 (2), 406–411. doi: http://doi.org/10.1016/j.jcis.2009.04.075
- Tuutijärvi, T., Lu, J., Sillanpää, M., Chen, G. (2009). As(V) adsorption on maghemite nanoparticles. Journal of Hazardous Materials, 166 (2-3), 1415–1420. doi: http://doi.org/10.1016/j.jhazmat.2008.12.069
- Perez, J. P. H., Freeman, H. M., Schuessler, J. A., Benning, L. G. (2019). The interfacial reactivity of arsenic species with green rust sulfate (GRSO4). Science of The Total Environment, 648, 1161–1170. doi: http://doi.org/10.1016/j.scitotenv.2018.08.163
- Pintor, A. M. A., Vieira, B. R. C., Santos, S. C. R., Boaventura, R. A. R., Botelho, C. M. S. (2018). Arsenate and arsenite adsorption onto iron-coated cork granulates. Science of The Total Environment, 642, 1075–1089. doi: http://doi.org/10.1016/j.scitotenv.2018.06.170
- Hristovski, K. D., Markovski, J. (2017). Engineering metal (hydr)oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: A critical review with emphasis on factors governing sorption processes. Science of The Total Environment, 598, 258–271. doi: http://doi.org/10.1016/j.scitotenv.2017.04.108
- Siddiqui, S. I., Chaudhry, S. A. (2017). Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Safety and Environmental Protection, 111, 592–626. doi: http://doi.org/10.1016/j.psep.2017.08.009
- Wang, J., Zhang, S., Pan, B., Zhang, W., Lv, L. (2011). Hydrous ferric oxide–resin nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure. Journal of Hazardous Materials, 198, 241–246. doi: http://doi.org/10.1016/j.jhazmat.2011.10.036
- Tandorn, S., Arqueropanyo, O.-A., Naksata, W., Sooksamiti, P. (2017). Preparation of Anion Exchange Resin Loaded with Ferric Oxide for Arsenic (V) Removal from Aqueous Solution. International Journal of Environmental Science and Development, 8 (6), 399–403. doi: http://doi.org/10.18178/ijesd.2017.8.6.985
- Chen, W., Parette, R., Zou, J., Cannon, F. S., Dempsey, B. A. (2007). Arsenic removal by iron-modified activated carbon. Water Research, 41 (9), 1851–1858. doi: http://doi.org/10.1016/j.watres.2007.01.052
- Nguyen, T. V., Vigneswaran, S., Ngo, H. H., Kandasamy, J. (2010). Arsenic removal by iron oxide coated sponge: Experimental performance and mathematical models. Journal of Hazardous Materials, 182 (1-3), 723–729. doi: http://doi.org/10.1016/j.jhazmat.2010.06.094
- Jang, M., Min, S.-H., Kim, T.-H., Park, J. K. (2006). Removal of Arsenite and Arsenate Using Hydrous Ferric Oxide Incorporated into Naturally Occurring Porous Diatomite. Environmental Science & Technology, 40 (5), 1636–1643. doi: http://doi.org/10.1021/es051501t
- Chen, R., Zhi, C., Yang, H., Bando, Y., Zhang, Z., Sugiur, N., Golberg, D. (2011). Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. Journal of Colloid and Interface Science, 359 (1), 261–268. doi: http://doi.org/10.1016/j.jcis.2011.02.071
- Zhang, Q., Pan, B., Zhang, W., Pan, B., Zhang, Q., Ren, H. (2008). Arsenate Removal from Aqueous Media by Nanosized Hydrated Ferric Oxide (HFO)-Loaded Polymeric Sorbents: Effect of HFO Loadings. Industrial & Engineering Chemistry Research, 47 (11), 3957–3962. doi: http://doi.org/10.1021/ie800275k
- Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B., Bollinger, J.-C. (2002). Arsenic Adsorption onto Pillared Clays and Iron Oxides. Journal of Colloid and Interface Science, 255 (1), 52–58. doi: http://doi.org/10.1006/jcis.2002.8646
- Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., Li, L. (2014). Adsorption of arsenic on modified montmorillonite. Applied Clay Science, 97-98, 17–23. doi: http://doi.org/10.1016/j.clay.2014.05.028
- Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G. et. al. (2014). Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 243, 14–23. doi: http://doi.org/10.1016/j.cej.2013.12.049
- Schwertman, U., Cornell, R. M. (2000). Iron Oxides in the Laboratory. Weinheim: WILEY-VCH Verlag GmbH, 188.
- Rouquerol, F., Rouquerol, J., Sing, K. S., Llewellyn, P., Maurin, G. (2014). Adsorption by Powders and Porous Solids. Amsterdam: Academic Press, 646.
- Suárez, M., García-Romero, E. (2006). FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Applied Clay Science, 31 (1-2), 154–163. doi: http://doi.org/10.1016/j.clay.2005.10.005
- Chang, R. R., Wang, S. L., Liu, Y. T., Chan, Y. T., Hung, J. T., Tzou, Y. M., Tseng, K. J. (2016). Interactions of the products of oxidative polymerization of hydroquinone as catalyzed by birnessite with Fe (hydr)oxides – an implication of the reactive pathway for humic substance formation. RSC Advances, 6 (25), 20750–20760. doi: http://doi.org/10.1039/c5ra19734a
- Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. et. al. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57 (4), 603–619. doi: http://doi.org/10.1351/pac198557040603
- Smedley, P., Nicolli, H., Macdonald, D. M., Barros, A., Tullio, J. (2002). Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17 (3), 259–284. doi: http://doi.org/10.1016/s0883-2927(01)00082-8
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2019 Antonina Bondarieva, Viktoriia Tobilko, Yurii Kholodko, Borys Kornilovych
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.