Аналіз перспективи використання насіння нуту для отримання функціональних харчових інгредієнтів

Автор(и)

  • Vladyslav Hevryk Одеська національна академія харчових технологій, вул. Канатна, 112, м. Одеса, Україна, 65039, Україна https://orcid.org/0000-0003-4856-3112
  • Leonid Kaprelyants Одеська національна академія харчових технологій, вул. Канатна, 112, м. Одеса, Україна, 65039, Україна https://orcid.org/0000-0003-2136-5669
  • Liudmyla Trufkati Одеська національна академія харчових технологій, вул. Канатна, 112, м. Одеса, Україна, 65039, Україна https://orcid.org/0000-0002-6233-6533
  • Liliia Pozhitkova Одеська національна академія харчових технологій, вул. Канатна, 112, м. Одеса, Україна, 65039, Україна https://orcid.org/0000-0002-7652-3305

DOI:

https://doi.org/10.15587/2706-5448.2020.210374

Ключові слова:

дієтичне та лікувально-профілактичне харчування, продовольчий нут, антинутрієнти, функціональні інгредієнти

Анотація

В даний час харчова промисловість все більше фокусує свою увагу на питаннях, пов'язаних зі зміною існуючих технологій з метою підвищення ефективності переробки сировини та збільшення випуску високоякісних продуктів харчування та функціональних інгредієнтів з мінімальною кількістю відходів. Саме тому об’єктом дослідження було обрано насіння нуту, як джерело цінного рослинного білка, який за своїм складом схожий на білок тваринного походження та водночас є найбагатшим джерелом функціональних інгредієнтів.

При дослідженні використано метод аналізу літературних джерел, які відповідають тематиці дослідження. Було проаналізовано ряд наукових праць, які пов’язанні з пророщенням та замочуванням нуту, біологічною цінністю нуту у вигляді хумусу, перспективами переробки нуту для виробництва м’ясних і хлібобулочних виробів.

У роботі показані особливості загального хімічного складу та характеристика окремих нутрієнтів і біологічно активних речовин нуту. Наведені оздоровчі та фізіологічні особливості продуктів з нуту, зокрема показана відмінна особливість нуту – його здатність акумулювати селен, який засвоюється в 5–10 разів краще, ніж з інших хімічних сполук. Це в свою чергу сприяє попередженню виникнення та розвитку раку та інших хвороб. Показано, що приготування їжі та термічна обробка в цілому зазвичай призводять до зниження харчової якості та фітохімічного складу харчових продуктів. Однак вони можуть інактивувати термолабільні антипоживні речовини, такі як бобові антитрипсинові чинники, які негативно впливають на біодоступність білка. Кулінарна обробка їжі призводить до зниження вмісту небажаних факторів у бобових, таких як фітати, та модулює амінокислотний склад і засвоюваність білка. Встановлено закономірності підвищення біологічної активності насіння нуту при пророщуванні. Спираючись на результати досліджень, було зроблено висновки щодо формування білка у насінні нуту в залежності від клімату.

На підставі результатів досліджень теоретично обґрунтована та підтверджена доцільність застосування продуктів переробки насіння нуту в технології харчових виробів поліпшеної біологічної цінності

Біографії авторів

Vladyslav Hevryk, Одеська національна академія харчових технологій, вул. Канатна, 112, м. Одеса, Україна, 65039

Аспірант

Кафедра біохімії, мікробіології та фізіології харчування

Leonid Kaprelyants, Одеська національна академія харчових технологій, вул. Канатна, 112, м. Одеса, Україна, 65039

Доктор технічних наук, професор, завідувач кафедри

Кафедра біохімії, мікробіології та фізіології харчування

Liudmyla Trufkati, Одеська національна академія харчових технологій, вул. Канатна, 112, м. Одеса, Україна, 65039

Кандидат технічних наук, доцент

Кафедра біохімії, мікробіології та фізіології харчування

Liliia Pozhitkova, Одеська національна академія харчових технологій, вул. Канатна, 112, м. Одеса, Україна, 65039

Кандидат технічних наук

Кафедра біохімії, мікробіології та фізіології харчування

Посилання

  1. Malik, S. R., Bakhsh, A., Asif, M. A., Iqbal, U. M. E. R., Iqbal, S. M. (2010). Assessment of genetic variability and interrelationship among some agronomic traits in chickpea. International Journal of Agriculture and Biology, 12 (1), 81–85.
  2. Silva-Cristobal, L., Osorio-Díaz, P., Tovar, J., Bello-Pérez, L. A. (2010). Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties Composición química, digestibilidad de carbohidratos, y capacidad antioxidante de variedades mexicanas cocidas de frijol negro, garbanzo, y lenteja. CyTA - Journal of Food, 8 (1), 7–14. doi: https://doi.org/10.1080/19476330903119218
  3. Gaur, P. M., Jukanti, A. K., Varshney, R. K. (2012). Impact of Genomic Technologies on Chickpea Breeding Strategies. Agronomy, 2 (3), 199–221. doi: https://doi.org/10.3390/agronomy2030199
  4. De Camargo, A. C., Favero, B. T., Morzelle, M. C., Franchin, M., Alvarez-Parrilla, E., de la Rosa, L. A. et. al. (2019). Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. International Journal of Molecular Sciences, 20 (11), 2644. doi: https://doi.org/10.3390/ijms20112644
  5. Ali, M. Y., Biswas, P. K., Shahriar, S. A., Nasif, S. O., Raihan, R. R. (2018). Yield and Quality Response of Chickpea to Different Sowing Dates. Asian Journal of Research in Crop Science, 1 (4), 1–8. doi: https://doi.org/10.9734/ajrcs/2018/41731
  6. Sichkar, V., Krivenko, A., Volkova, N. (2019). Results and prospects of leguminous crops breeding in Ukraine. Conferința "Life sciences in the dialogue of generations: connections between universities, academia and business community", 49–50.
  7. Wallace, T., Murray, R., Zelman, K. (2016). The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients, 8 (12), 766. doi: https://doi.org/10.3390/nu8120766
  8. Garg, R., Patel, R. K., Jhanwar, S., Priya, P., Bhattacharjee, A., Yadav, G. et. al. (2011). Gene Discovery and Tissue-Specific Transcriptome Analysis in Chickpea with Massively Parallel Pyrosequencing and Web Resource Development. Plant Physiology, 156 (4), 1661–1678. doi: https://doi.org/10.1104/pp.111.178616
  9. Hajyzadeh, M., Turktas, M., Khawar, K. M., Unver, T. (2015). miR408 overexpression causes increased drought tolerance in chickpea. Gene, 555 (2), 186–193. doi: https://doi.org/10.1016/j.gene.2014.11.002
  10. Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G. et. al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31 (3), 240–246. doi: https://doi.org/10.1038/nbt.2491
  11. Clark, J., Taylor, C., Zahradka, P. (2018). Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds. Nutrients, 10 (4), 434. doi: https://doi.org/10.3390/nu10040434
  12. Kaya, M., Küçükyumuk, Z., Erdal, I. (2009). Phytase activity, phytic acid, zinc, phosphorus and protein contents in different chickpea genotypes in relation to nitrogen and zinc fertilization. African Journal of Biotechnology, 8 (18), 4508–4513.
  13. Jha, U. C., Bohra, A., Nayyar, H., Rani, A., Devi, P., Saabale, P. R., Parida, S. K. (2019). Breeding and Genomics Approaches for Improving Productivity Gains in Chickpea Under Changing Climate. Genomic Designing of Climate-Smart Pulse Crops, 135–164. doi: https://doi.org/10.1007/978-3-319-96932-9_3
  14. Kholod, S. M., Kholod, S. G., Illichhov, Yu. G. (2013). Chickpea as a prospective legume crop for Ukrainian forest steppe. Bulletin of Poltava State Agrarian Academy, 2, 49–54. doi: https://doi.org/10.31210/visnyk2013.02.12
  15. Wood, J. A., Knights, E. J., Choct, M. (2011). Morphology of Chickpea Seeds (Cicer arietinum L.): Comparison of desi and kabuli Types. International Journal of Plant Sciences, 172 (5), 632–643. doi: https://doi.org/10.1086/659456
  16. Chandora, R., Gayacharan, Shekhawat, N., Malhotra, N. (2020). Chickpea genetic resources: collection, conservation, characterization, and maintenance. Chickpea: Crop Wild Relatives for Enhancing Genetic Gains, 37–61. doi: https://doi.org/10.1016/b978-0-12-818299-4.00003-8
  17. Bushulyan, O. V., Sichkar, V. I., Bushulyan, M. A., Pasichnyk, S. M. (2015). Results and prospects of the chickpea breeding in Ukraine. Zernobobovye i krupyanye kul'tury, 4 (16), 49–54.
  18. Vus, N. A., Kobyzeva, L. N., Bezuglaya, O. N. (2020). Determination of the breeding value of collection chickpea (Cicer arietinum L.) accessions by cluster analysis. Vavilov Journal of Genetics and Breeding, 24 (3), 244–251. doi: https://doi.org/10.18699/vj20.617
  19. Xu, Y., Obielodan, M., Sismour, E., Arnett, A., Alzahrani, S., Zhang, B. (2017). Physicochemical, functional, thermal and structural properties of isolated Kabuli chickpea proteins as affected by processing approaches. International Journal of Food Science & Technology, 52 (5), 1147–1154. doi: https://doi.org/10.1111/ijfs.13400
  20. Summo, C., De Angelis, D., Ricciardi, L., Caponio, F., Lotti, C., Pavan, S., Pasqualone, A. (2019). Data on the chemical composition, bioactive compounds, fatty acid composition, physico-chemical and functional properties of a global chickpea collection. Data in Brief, 27, 104612. doi: https://doi.org/10.1016/j.dib.2019.104612
  21. Karaca, A. C., Low, N., Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, 44 (9), 2742–2750. doi: https://doi.org/10.1016/j.foodres.2011.06.012
  22. Roman, G. V., Epure, L. I., Toader, M., Lombardi, A. R. (2016). Grain legumes - main source of vegetal proteins for European consumption. AgroLife Scientific Journal, 5 (1), 178–183.
  23. Gundogan, R., Can Karaca, A. (2020). Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT, 130, 109609. doi: https://doi.org/10.1016/j.lwt.2020.109609
  24. Ribeiro, I. C., Leclercq, C. C., Simões, N., Toureiro, A., Duarte, I., Freire, J. B. et. al. (2017). Identification of chickpea seed proteins resistant to simulated in vitro human digestion. Journal of Proteomics, 169, 143–152. doi: https://doi.org/10.1016/j.jprot.2017.06.009
  25. Siva, N., Thavarajah, P., Kumar, S., Thavarajah, D. (2019). Variability in Prebiotic Carbohydrates in Different Market Classes of Chickpea, Common Bean, and Lentil Collected From the American Local Market. Frontiers in Nutrition, 6. doi: https://doi.org/10.3389/fnut.2019.00038
  26. Xing, Q., Dekker, S., Kyriakopoulou, K., Boom, R. M., Smid, E. J., Schutyser, M. A. I. (2020). Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innovative Food Science & Emerging Technologies, 59, 102269. doi: https://doi.org/10.1016/j.ifset.2019.102269
  27. Gangola, M. P., Jaiswal, S., Kannan, U., Gaur, P. M., Båga, M., Chibbar, R. N. (2016). Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds. Phytochemistry, 125, 88–98. doi: https://doi.org/10.1016/j.phytochem.2016.02.009
  28. Singh, N., Singh Sandhu, K., Kaur, M. (2004). Characterization of starches separated from Indian chickpea (Cicer arietinum L.) cultivars. Journal of Food Engineering, 63 (4), 441–449. doi: https://doi.org/10.1016/j.jfoodeng.2003.09.003
  29. Zhang, H., Yin, L., Zheng, Y., Shen, J. (2016). Rheological, textural, and enzymatic hydrolysis properties of chickpea starch from a Chinese cultivar. Food Hydrocolloids, 54, 23–29. doi: https://doi.org/10.1016/j.foodhyd.2015.09.018
  30. Xu, J., Ma, Z., Ren, N., Li, X., Liu, L., Hu, X. (2019). Understanding the multi-scale structural changes in starch and its physicochemical properties during the processing of chickpea, navy bean, and yellow field pea seeds. Food Chemistry, 289, 582–590. doi: https://doi.org/10.1016/j.foodchem.2019.03.093
  31. Niño-Medina, G., Muy-Rangel, D., de la Garza, A., Rubio-Carrasco, W., Pérez-Meza, B., Araujo-Chapa, A. et. al. (2019). Dietary Fiber from Chickpea (Cicer arietinum) and Soybean (Glycine max) Husk Byproducts as Baking Additives: Functional and Nutritional Properties. Molecules, 24 (5), 991. doi: https://doi.org/10.3390/molecules24050991
  32. Niño-Medina, G., Muy-Rangel, D., Urías-Orona, V. (2016). Chickpea (Cicer arietinum) and Soybean (Glycine max) Hulls: Byproducts with Potential Use as a Source of High Value-Added Food Products. Waste and Biomass Valorization, 8 (4), 1199–1203. doi: https://doi.org/10.1007/s12649-016-9700-4
  33. Kishor, K., David, J., Tiwari, S., Singh, A., Rai, B. S. (2017). Nutritional Composition of Chickpea (Cicer arietinum) Milk. International Journal of Chemical Studies, 5 (4), 1941–1944.
  34. Kaya, M., Kan, A., Yilmaz, A., Karaman, R., Sener, A. (2018). The fatty acid and mineral compositions of different chickpea cultivars cultivated. Fresenius Environmental Bulletin, 27 (2), 1240–1247.
  35. Ferreira, C. D., Bubolz, V. K., da Silva, J., Dittgen, C. L., Ziegler, V., de Oliveira Raphaelli, C., de Oliveira, M. (2019). Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT, 111, 363–369. doi: https://doi.org/10.1016/j.lwt.2019.05.049
  36. Serrano, C., Carbas, B., Castanho, A., Soares, A., Patto, M. C. V., Brites, C. (2017). Characterisation of nutritional quality traits of a chickpea (Cicer arietinum) germplasm collection exploited in chickpea breeding in Europe. Crop and Pasture Science, 68 (11), 1031. doi: https://doi.org/10.1071/cp17129
  37. El-Adawy, T. A. (2002). Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods for Human Nutrition, 57 (1), 83–97. doi: https://doi.org/10.1023/A:1013189620528
  38. Sharma, A., Jood, S., Sehgal, S. (1996). Antinutrients (phytic acid, polyphenols) and minerals (Ca, Fe) availability (in vitro) of chickpea and lentil cultivars. Food / Nahrung, 40 (4), 182–184. doi: https://doi.org/10.1002/food.19960400404
  39. Mehra, P., Singh, A. P., Bhadouria, J., Verma, L., Panchal, P., Giri, J. (2018). Phosphate Homeostasis: Links with Seed Quality and Stress Tolerance in Chickpea. Pulse Improvement, 191–217. doi: https://doi.org/10.1007/978-3-030-01743-9_9
  40. Karaca, N., Ates, D., Nemli, S., Ozkuru, E., Yilmaz, H., Yagmur, B. et. al. (2019). Genome-Wide Association Studies of Protein, Lutein, Vitamin C, and Fructose Concentration in Wild and Cultivated Chickpea Seeds. Crop Science, 59(6), 2652–2666. doi: https://doi.org/10.2135/cropsci2018.12.0738
  41. Meher, H. C., Singh, G., Chawla, G. (2018). Metabolic alternations of some amino acids, coenzymes, phytohormones and vitamins in chickpea crop grown from seeds soaked with defense stimulator. Acta Physiologiae Plantarum, 40 (3). doi: https://doi.org/10.1007/s11738-018-2607-x
  42. Abbo, S., Molina, C., Jungmann, R., Grusak, M. A., Berkovitch, Z., Reifen, R. et. al. (2005). Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics, 111 (2), 185–195. doi: https://doi.org/10.1007/s00122-005-1930-y
  43. Flowers, T. J., Gaur, P. M., Gowda, C. L. L., Krishnamurthy, L., Samineni, S., Siddique, K. H. M. et. al. (2010). Salt sensitivity in chickpea. Plant, Cell & Environment, 33 (4), 490–509. doi: https://doi.org/10.1111/j.1365-3040.2009.02051.x
  44. Lou, Z., Wang, H., Zhang, M., Wang, Z. (2010). Improved extraction of oil from chickpea under ultrasound in a dynamic system. Journal of Food Engineering, 98 (1), 13–18. doi: https://doi.org/10.1016/j.jfoodeng.2009.11.015
  45. Li, P., Shi, X., Wei, Y., Qin, L., Sun, W., Xu, G. et. al. (2015). Synthesis and Biological Activity of Isoflavone Derivatives from Chickpea as Potent Anti-Diabetic Agents. Molecules, 20 (9), 17016–17040. doi: https://doi.org/10.3390/molecules200917016
  46. Aisa, H. A., Gao, Y., Yili, A., Ma, Q., Cheng, Z. (2019). Beneficial Role of Chickpea (Cicer arietinum L.) Functional Factors in the Intervention of Metabolic Syndrome and Diabetes Mellitus. Bioactive Food as Dietary Interventions for Diabetes, 615–627. doi: https://doi.org/10.1016/b978-0-12-813822-9.00039-4
  47. Magee, P. J., Owusu-Apenten, R., McCann, M. J., Gill, C. I., Rowland, I. R. (2012). Chickpea (Cicer arietinum) and Other Plant-Derived Protease Inhibitor Concentrates Inhibit Breast and Prostate Cancer Cell Proliferation In Vitro. Nutrition and Cancer, 64 (5), 741–748. doi: https://doi.org/10.1080/01635581.2012.688914
  48. Gorlov, I. F., Nelepov, Yu. N., Slozhenkina, M. I., Korovina, E. Yu., Simon, M. V. (2014). Razrabotka novyh funktsional'nyh produktov na osnove ispol'zovaniya proroshchennogo nuta. Vse o myase, 1, 28–30.
  49. Chung, H.-J., Liu, Q., Hoover, R., Warkentin, T. D., Vandenberg, B. (2008). In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chemistry, 111 (2), 316–321. doi: https://doi.org/10.1016/j.foodchem.2008.03.062
  50. Olaimat, A. N., Al‐Holy, M. A., Abu Ghoush, M. H., Al‐Nabulsi, A. A., Osaili, T. M., Holley, R. A. (2019). Inhibitory effects of cinnamon and thyme essential oils against Salmonella spp. in hummus (chickpea dip). Journal of Food Processing and Preservation, 43 (5), e13925. doi: https://doi.org/10.1111/jfpp.13925
  51. Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinumL.): a review. British Journal of Nutrition, 108 (S1), S11–S26. doi: https://doi.org/10.1017/s0007114512000797
  52. Barbana, C., Boye, J. I. (2010). Angiotensin I-converting enzyme inhibitory activity of chickpea and pea protein hydrolysates. Food Research International, 43 (6), 1642–1649. doi: https://doi.org/10.1016/j.foodres.2010.05.003
  53. Ma, Z., Boye, J. I., Simpson, B. K., Prasher, S. O., Monpetit, D., Malcolmson, L. (2011). Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International, 44 (8), 2534–2544. doi: https://doi.org/10.1016/j.foodres.2010.12.017
  54. Lobov, A. V., Baranova, A. S., Savel'eva, Yu. S. (2016). Razrabotka polufabrikatov v teste s primeneniem zernobobovoy kul'tury nut. Elektronniy nauchno-metodicheskiy zhurnal Omskogo GAU, 2. Available at: http://e-journal.omgau.ru/index.php/spetsvypusk-2/31-spets02/422-00171
  55. Torres-Fuentes, C., Alaiz, M., Vioque, J. (2012). Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chemistry, 134 (3), 1585–1588. doi: https://doi.org/10.1016/j.foodchem.2012.03.112
  56. Shang, X., Dou, Y., Zhang, Y., Tan, J.-N., Liu, X., Zhang, Z. (2019). Tailor-made natural deep eutectic solvents for green extraction of isoflavones from chickpea (Cicer arietinum L.) sprouts. Industrial Crops and Products, 140, 111724. doi: https://doi.org/10.1016/j.indcrop.2019.111724
  57. Ercan, P., El, S. N. (2016). Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chemistry, 205, 163–169. doi: https://doi.org/10.1016/j.foodchem.2016.03.012
  58. Bar-El Dadon, S., Pascual, C. Y., Eshel, D., Teper-Bamnolker, P., Paloma Ibáñez, M. D., Reifen, R. (2013). Vicilin and the basic subunit of legumin are putative chickpea allergens. Food Chemistry, 138 (1), 13–18. doi: https://doi.org/10.1016/j.foodchem.2012.10.031
  59. Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43 (2), 537–546. doi: https://doi.org/10.1016/j.foodres.2009.07.021
  60. Sharma, S., Yadav, N., Singh, A., Kumar, R. (2013). Nutritional and antinutritional profile of newly developed chickpea (Cicer arietinum L) varieties. International Food Research Journal, 20 (2), 805–810.
  61. Mittal, R., Nagi, H. P. S., Sharma, P., Sharma, S. (2012). Effect of Processing on Chemical Composition and Antinutritional Factors in Chickpea Flour. Journal of Food Science and Engineering, 2 (3), 180–186. doi: https://doi.org/10.17265/2159-5828/2012.03.008
  62. Mondor, M., Aksay, S., Drolet, H., Roufik, S., Farnworth, E., Boye, J. I. (2009). Influence of processing on composition and antinutritional factors of chickpea protein concentrates produced by isoelectric precipitation and ultrafiltration. Innovative Food Science & Emerging Technologies, 10 (3), 342–347. doi: https://doi.org/10.1016/j.ifset.2009.01.007
  63. Rachwa-Rosiak, D., Nebesny, E., Budryn, G. (2015). Chickpeas – Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Critical Reviews in Food Science and Nutrition, 55 (8), 1137–1145. doi: https://doi.org/10.1080/10408398.2012.687418
  64. Dragičević, V., Kratovalieva, S., Dumanović, Z., Dimov, Z., Kravić, N. (2015). Variations in level of oil, protein, and some antioxidants in chickpea and peanut seeds. Chemical and Biological Technologies in Agriculture, 2 (1), 2. doi: https://doi.org/10.1186/s40538-015-0031-7
  65. Sreerama, Y. N., Sashikala, V. B., Pratape, V. M., Singh, V. (2012). Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chemistry, 131 (2), 462–468. doi: https://doi.org/10.1016/j.foodchem.2011.09.008
  66. Haileslassie, H. A., Henry, C. J., Tyler, R. T. (2016). Impact of household food processing strategies on antinutrient (phytate, tannin and polyphenol) contents of chickpeas (Cicer arietinum L.) and beans (Phaseolus vulgaris L.): a review. International Journal of Food Science & Technology, 51 (9), 1947–1957. doi: https://doi.org/10.1111/ijfs.13166
  67. Choudhary, S., Kaur, J., Kaur, S., Kaur, S., Singh, I., Singh, S. (2015). Evaluation of antinutritional factors in kabuli chickpea cultivars differing in seed size. Indian Journal of Agricultural Biochemistry, 28 (1), 94–97.
  68. Fouad, A. A., Rehab, F. M. A. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Scientiarum Polonorum Technologia Alimentaria, 14 (3), 233–246. doi: https://doi.org/10.17306/j.afs.2015.3.25
  69. Olika, E., Abera, S., Fikre, A. (2019). Physicochemical Properties and Effect of Processing Methods on Mineral Composition and Antinutritional Factors of Improved Chickpea (Cicer arietinum L.) Varieties Grown in Ethiopia. International Journal of Food Science, 2019, 1–7. doi: https://doi.org/10.1155/2019/9614570
  70. Portari, G. V., Tavano, O. L., Silva, M. A. da, Neves, V. A. (2005). Effect of chickpea (Cicer arietinum L.) germination on the major globulin content and in vitro digestibility. Ciência e Tecnologia de Alimentos, 25 (4), 807–812. doi: https://doi.org/10.1590/s0101-20612005000400029
  71. Alajaji, S. A., El-Adawy, T. A. (2006). Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. Journal of Food Composition and Analysis, 19 (8), 806–812. doi: https://doi.org/10.1016/j.jfca.2006.03.015
  72. Margier, M., Georgé, S., Hafnaoui, N., Remond, D., Nowicki, M., Du Chaffaut, L. et. al. (2018). Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method. Nutrients, 10(11), 1668. doi: https://doi.org/10.3390/nu10111668
  73. Kılınççeker, O., Kurt, Ș. (2010). Effects of chickpea (Cicer arietinum) flour on quality of deep-fat fried chicken nuggets. Journal of Food, Agriculture & Environment, 8 (2), 47–50.
  74. Brennan, C. S., Brennan, M. A., Mason, S. L., Patil, S. S. (2016). The Potential of Combining Cereals and Legumes in the Manufacture of Extruded Products for a Healthy Lifestyle. EC Nutrition, 5 (2), 1120–1127.
  75. Serrano-Sandoval, S. N., Guardado-Félix, D., Gutiérrez-Uribe, J. A. (2019). Changes in digestibility of proteins from chickpeas (Cicer arietinum L.) germinated in presence of selenium and antioxidant capacity of hydrolysates. Food Chemistry, 285, 290–295. doi: https://doi.org/10.1016/j.foodchem.2019.01.137
  76. Domínguez-Arispuro, D. M., Cuevas-Rodríguez, E. O., Milán-Carrillo, J., León-López, L., Gutiérrez-Dorado, R., Reyes-Moreno, C. (2017). Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. Journal of Food Science and Technology, 55 (2), 638–647. doi: https://doi.org/10.1007/s13197-017-2973-1
  77. Marengo, M., Carpen, A., Bonomi, F., Casiraghi, M. C., Meroni, E., Quaglia, L. et. al. (2017). Macromolecular and Micronutrient Profiles of Sprouted Chickpeas to Be Used for Integrating Cereal-Based Food. Cereal Chemistry Journal, 94 (1), 82–88. doi: https://doi.org/10.1094/cchem-04-16-0108-fi
  78. Asmare, H., Admassu, S. (2013). Development and evaluation of dry fermented sausages processed from blends of chickpea flour and beef. East African Journal of Sciences, 7 (1), 17–30.
  79. Siddiqui, M., Khan, M. A. (2011). Comparative study on quality evaluation of buffalo meat slices incorporated with finger millet, oats and chickpea. In 11th International Congress on Engineering and Food.
  80. Gorlov, I. F., Mikhailovn, T., Sitnikova, O. I., Slozhenkin, M. I., Zlobina, E. Y., Karpenko, E. V. (2016). New Functional Products with Chickpeas: Reception, Functional Properties. American Journal of Food Technology, 11 (6), 273–281. doi: https://doi.org/10.3923/ajft.2016.273.281
  81. Ozulku, G., Arıcı, M. (2017). Characterization of the rheological and technological properties of the frozen sourdough bread with chickpea flour addition. Journal of Food Measurement and Characterization, 11 (3), 1493–1500. doi: https://doi.org/10.1007/s11694-017-9528-z
  82. Shrivastava, C., Chakraborty, S. (2018). Bread from wheat flour partially replaced by fermented chickpea flour: Optimizing the formulation and fuzzy analysis of sensory data. LWT, 90, 215–223. doi: https://doi.org/10.1016/j.lwt.2017.12.019
  83. Inyang, U., Ibanga, U., Enidiok, S. (2018). Changes in Amino Acids, Anti-Nutrients and Functional Properties of African Yam Bean Flour Caused by Variation in Steeping Time Prior to Autoclaving. Asian Journal of Biotechnology and Bioresource Technology, 3 (1), 1–10. doi: https://doi.org/10.9734/ajb2t/2018/39747

##submission.downloads##

Опубліковано

2020-08-31

Як цитувати

Hevryk, V., Kaprelyants, L., Trufkati, L., & Pozhitkova, L. (2020). Аналіз перспективи використання насіння нуту для отримання функціональних харчових інгредієнтів. Technology Audit and Production Reserves, 4(3(54), 41–49. https://doi.org/10.15587/2706-5448.2020.210374

Номер

Розділ

Звіт про науково-дослідні роботи